Sucralose is a synthetic sweetener that has approximately 600 times the sweetness of sugar, zero calories and a flavor closely resembling sugar. Over 30 countries throughout the world have approved its use. Japan also approved its use as a food additive in 1999. In Japan, the permitted level of sucralose content in soft drinks is 0.40g/kg, and sucralose is quantified by titration. In the U.S., sucralose is quantified by HPLC. This Application News introduces an example of analyzing sucralose contained in soft drinks using a differential refractive index detector and an evaporative light scattering detector.

Analytical Conditions

Sucralose, also known as trichlorogalactosucrose, has a structure where sucrose's three hydroxyl groups have been replaced by three chlorine atoms (Fig. 1). Sucralose is generally analyzed by the combination of reversed-phase chromatography and a refractive index detector (RID). Here, an evaporative light scattering detector (ELSD) was serially connected with an RID for data comparison. Fig. 2 shows the result of analyzing 20µL of sucralose standard sample (400mg/L in purified water). The analytical conditions are shown in Table 1.

- **Column**: Shim-pack VP-ODS (150mm L×4.6mm I.D.)
- **Mobile Phase**: Water / Acetonitrile = 85 / 15 (v/v)
- **Flow Rate**: 1.0mL/min
- **Temperature**: 40˚C
- **Detection**:
 - RID-10A
 - ELSD-LT
 - Temperature : 35˚C
 - Gain : 7
 - Nebulize Gas: N2
 - Gas Pressure : 350kPa
- **Injection Volume**: 20µL

Table 1 Analytical Conditions

<table>
<thead>
<tr>
<th>Column</th>
<th>Shim-pack VP-ODS (150mm L×4.6mm I.D.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile Phase</td>
<td>Water / Acetonitrile = 85 / 15 (v/v)</td>
</tr>
<tr>
<td>Flow Rate</td>
<td>1.0mL/min</td>
</tr>
<tr>
<td>Temperature</td>
<td>40˚C</td>
</tr>
<tr>
<td>Detection</td>
<td>RID-10A</td>
</tr>
<tr>
<td>ELSD-LT</td>
<td>Temperature : 35˚C</td>
</tr>
<tr>
<td>Gain</td>
<td>7</td>
</tr>
<tr>
<td>Nebulize Gas</td>
<td>N2</td>
</tr>
<tr>
<td>Gas Pressure</td>
<td>350kPa</td>
</tr>
<tr>
<td>Injection Volume</td>
<td>20µL</td>
</tr>
</tbody>
</table>

Fig.1 Structure of Sucralose

Fig.2 Chromatogram of Standard Sucralose (400mg/L)
Fig. 3 shows the chromatograms obtained by RID and ELSD when injecting 20µL of standard sucralose sample (40mg/L). The analytical conditions are the same as in Table 1. A more stable baseline is obtained with ELSD. However, ELSD’s detection response is not proportional to concentration. Therefore, the calibration curve must be plotted using double logarithmic coordinates.

Figure 3 Chromatogram of Standard Sucralose (40mg/L)

Fig. 4 shows the chromatograms obtained when injecting 20µL of soft drinks A and B, and canned coffee. The analytical conditions are the same as in Table 1. Beverage B and the canned coffee did not contain sucralose, so they were spiked in advance with sucralose to obtain a concentration of 400mg/L. Soft drinks A and B were filtered through a membrane filter before injection. For the canned coffee, the injection sample was obtained by centrifugal separation (12,000rpm × 15min) using an ultrafiltration membrane (M.W. 10,000).

Figure 4 Chromatogram of Soft Drink A

Figure 5 Chromatogram of Soft Drink B (spiked 400mg/L)

Figure 6 Chromatogram of Canned Coffee Drink (spiked 400mg/L)

Analysis of Soft Drinks

Two soft drinks A and B, and canned coffee were analyzed. The analytical conditions are the same as in Table 1. Beverage B and the canned coffee did not contain sucralose, so they were spiked in advance with sucralose to obtain a concentration of 400mg/L. Soft drinks A and B were filtered through a membrane filter before injection. For the canned coffee, the injection sample was obtained by centrifugal separation (12,000rpm × 15min) using an ultrafiltration membrane (M.W. 10,000).

Bibliography:
2) Food Chemicals Codex Fourth Edition