Integration of steroids analysis in serum using LC-MS/MS with full-automated sample preparation

ASMS 2016 WP-486

Toshikazu Minohata, Daisuke Kawakami
Shimadzu Corporation, Japan
Integration of steroids analysis in serum using LC-MS/MS with full-automated sample preparation

Introduction
Currently sample preparation for the detection of steroids in serum by liquid chromatography-mass spectrometry (LC-MS/MS) involves complex offline extraction methods such as solid phase extraction or liquid/liquid extraction, all of which require additional sample concentration and reconstitution in an appropriate solvent. These sample preparation methods are time-consuming, often taking 1 hour or more per sample, and are more vulnerable to variability due to errors in manual preparation. Our approach to offering a high sensitivity steroid detection method and timely, automated analysis of multiple samples is to use the automated sample preparation system coupled to the detection capabilities of a high-sensitivity triple stage quadrupole mass spectrometer.

Materials and Methods
10 steroid hormones (cortisol, aldosterone, 11-deoxycortisol, corticosterone, 17-OHP, androstenedione, DHEA, DHEAS, progesterone and testosterone) in serum were verified using CHS™ MSMS Steroids Kit (PerkinElmer, USA). Serum sample was loaded directly into the automated sample preparation system (CLAM-2000 Shimadzu, Japan). The CLAM-2000 was programmed to perform protein precipitation using acetonitrile followed by filtration and sample collection. The sample is then transported using an arm from the CLAM-2000 to the HPLC without human intervention for LC-MS/MS analysis. The treated samples were trapped using a MAYI-ODS column and then separated by Core-Shell Biphenyl HPLC column at 40 °C with a binary gradient system at a flow rate of 0.3 ml/min in 12 min.
Integration of steroids analysis in serum using LC-MS/MS with full-automated sample preparation

HPLC

- Mobile Phase A: 1mM ammonium fluoride – water
- Mobile Phase B: Methanol
- Mobile Phase C: 10mM ammonium formate – water
- Column temperature: 40 °C
- Analytical Column: Kinetex Biphenyl (50mm L x 2mm I.D., 2.6µm)
- Guard Column: MAYI-ODS column (5mm L x 2mm I.D.)
- Gradient Program:

Injection Volume: 30 µL

Mass (LCMS-8060 triple quadrupole mass spectrometry)

- Ionization: heated ESI
- Nebulizing Gas Flow: 3 L / min
- Drying Gas Pressure: 7 L / min
- Heating gas flow: 13 L/min
- DL Temperature: 120 °C
- BH Temperature: 450 °C
- Interface Temperature: 370 °C
Integration of steroids analysis in serum using LC-MS/MS with full-automated sample preparation

Results

We evaluated this system using calibrator and control serum spiked with 10 steroids contained in the kit and carried out concurrent analysis over a range of concentrations for each steroid: cortisol (1.51-320 ng/mL), aldosterone (0.03-1.14 ng/mL), 11-deoxycortisol (0.08-18 ng/mL), corticosterone (0.29-62 ng/mL), 17-OHP (0.12-26 ng/mL), androstenedione (0.08-18 ng/mL), DHEA (0.31-65 ng/mL), DHEAS (12.9-2750 ng/mL), progesterone (0.12-26.5 ng/mL) and testosterone (0.03-7.2 ng/mL). The calibration curves that were generated had linear regression values of $r^2 > 0.997$ for each curve. The reproducibility (N=3) at seven concentrations, including LLOQ of each compounds was excellent (CV<10%). We found that the sample preparation time was reduced from 60 minutes to 6 minutes by the automated system. Thus sample preparation and LC/MS/MS analysis can be performed in parallel to accelerate throughput.
Integration of steroids analysis in serum using LC-MS/MS with full-automated sample preparation

![Calibration Curves](image)

Fig. 3 Calibration Curves (L1-L7) and MRM Chromatograms (L1) of 10 Steroids
Integration of steroids analysis in serum using LC-MS/MS with full-automated sample preparation

* Traditional sample preparation (protein precipitation)

60min

Add ACN with IS → Shake for 15 min → Centrifuge for 30 min → Transfer the supernatants → Dry for >30 min → Reconstitute

* Automated sample preparation process by CLAM-2000

6min

Add ACN with IS → Shake for 3 min → Filtrate for 2 min

Fig.4 Comparison with a time required for sample preparation

Fig.5 Analytical Flow with Parallel Processing
Conclusions

We completed steroid analysis using the automated sample preparation system coupled to LC-MS/MS. The results show the capability of the system for large sample set analyses with improved accuracy and precision by eliminating human error associated with manual sample handling.

64th ASMS Conference on Mass Spectrometry & Allied Topics, June 5-9, 2016, San Antonio, TX