## 🕀 SHIMADZU

# **Application News**



SSI-GC-003

### Trace Oxygenated Hydrocarbons in Liquid Hydrocarbon Streams by Multidimensional GC

#### Introduction

It has been widely accepted that oxygenates are related to corrosion and fouling issues in refinery processes. Accurate determination of trace oxygenated hydrocarbons in liquid hydrocarbon streams plays an important role in process design and operation. Method UOP 960 defines testing procedures utilizing a valved gas chromatograph (GC) system. A non-polar column accumulates components of interest, and a polar column is used to separate oxygenates. In fact, the instrumentation is a prototype of multidimensional GC (MDGC) that requires complicated setup and configuration. Determination of valve timing, however, has been proven to be a daunting task. Operators work at optimizing parameters in a trial-and-error process, which is both laborious and time consuming. Furthermore, great difficulties could arise in instrument maintenance and troubleshooting. The goal of this study is to simplify the UOP 960 method and to reduce run time if it is possible. The ultimate goal is to improve overall productivity in refinery processes.

Shimadzu MDGC (Multi-dimensional GC) is a heart-cutting technique, targeted at solving coelution issues. It takes advantage of combining a non-polar phase capillary column with a polar phase capillary column to achieve separations that would otherwise be impossible. The heart of this system is a low-volume capillary pressure switch (Multi-Deans switch) that directs the eluate from the first column either to the first detector, or on to a second, complementaryphased column along with a second detector. This switch is operated by a software control module (MDGCsolution) that interacts cooperatively with both GCsolution and GCMSsolution software.

MDGCsolution software allows for multiple heart-cuts to be made very simply and reproducibly, as shown in Figure 1.



Figure 1: MDGCsolution software makes heart-cut as simple as double clicks

The advent of the Deans switch<sup>i</sup> allowed simplification of complicated valved GCs and made heart-cut MDGC possible. The development and applications of the heart-cut MDGC technique are, however, still in their infancy. The original Deans switch achieved flow switching by controlling pressures. It had inherent pressure control issues, however, that could lead to shifting retention times for components eluting after the switching time. Pressure was controlled on only one side of the switch, and the column pressure changed each time a component was switched on to the second column. This made it difficult to reproduce results when taking multiple cuts in the same run. To circumvent this problem, Shimadzu invented an improved Deans switch. Adding pressure control to both sides of the Deans switch allows for making multiple cuts with reproducible retention times on both the first and the second columns. The working mechanism is depicted in Figure 2.



Figure 2: Mechanism of improved Multi-Deans switch.

#### Instrumentation

Two Shimadzu GC-2010 Plus units were used to provide independent column oven temperature control, each equipped with a split/splitless (SPL) injector and a Flame Ionization Detector (FID). An improved MDGC switching device was mounted in the 1<sup>st</sup> GC oven, and a heated transfer line bridged the 1<sup>st</sup> GC and the 2<sup>nd</sup> GC, which also serves as an injection port for the 2<sup>nd</sup> GC. A 15m X 0.32mm X 0.50µm Rtx-1 column was installed in the 1<sup>st</sup> GC oven, and a 10m X 0.53mm X 10µm CP-Lowox column was installed in the 2<sup>nd</sup> GC oven. A piece of 0.5m X 0.32mm fused silica untreated capillary tubing was used as mid-point restrictor of the switching device that was connected to the 1<sup>st</sup> FID detector. An AOC20i autosampler was mounted on the 1<sup>st</sup> GC to perform standard split/splitless injections, and a 4-port liquid valve with 1µL internal sample loop was mounted on the side of the 1<sup>st</sup> GC to perform valve injections, as shown in Figure 3. GCsolution and MDGCsolution software were used throughout the study.



#### UOP960 GC-2010 Plus

Figure 3: UOP960 GC-2010 Plus drawing of valve sampling

#### **Analytical Conditions**

Columns: Rtx-1, 15m X 0.32mm X 0.50μm CP-Lowox, 30 m X 0.53mm X 0.25 μm

#### AOC-20i conditions:

Injection volume: 1µL # of Solvent Rinses pre-injection: 2 # of Solvent Rinses post-injection: 2 Plunger Speed (Suction): high Plunger Speed (Injection): high Injection Mode: normal Inj. Port Dwell Time: 0.3 sec Washing Volume: 8 µL

Viscosity Comp. Time: 0.2 sec Syringe Insertion Speed: high Pumping Times: 5 Plunger Washing Speed: high

#### 1<sup>st</sup> GC conditions:

INJ Temp: 280°CCarrier Gas: HeFlow Control Mode: PressureINJ Pressure: 35KPaColumn Flow: 0.91mL/minPurge Flow: 1mL/minSplit Ratio: 10.0CON1 Temp: 280.0°CValve Box: 25°CCoven1 Temp: 40.0°C, 10°C/min to 250°C, hold 4 minDET Temp: 300°CMakeup Gas: HeMakeup Flow: 0.0mL/minH2Air Flow: 400.0mL/min.H2

#### 2<sup>nd</sup> GC Conditions:

Oven2 Temp:  $50^{\circ}$ C,  $10^{\circ}$ C/min to  $250^{\circ}$ C, hold 4 minSample Inlet Unit: GCDET Temp:  $300^{\circ}$ CMakeup Gas: HeMakeup Flow: 20.0mL/minH2 Flow: 40.0mL/minAir Flow: 400.0mL/minSwitch Pressure: 20.0KPaSwitch Window: 0.25min to 5.68min out of the  $1^{st}$  GC chromatogram

#### Standards

Scott<sup>™</sup> LPG standard were purchased from Air Liquide America Specialty Gases LLC. It contains 51.1ppm 2-butanone, 1.02ppm 2-methyl-2-propanol, balanced with isobutane.

Qualitative mixture of oxygenate standards were prepared according to method ASTM D4307. A 500mL Glass bottle was wrapped with aluminum foil, and all GC sample vials were amber glass vials. cyclohexane, benzene, toluene, *p*-xylene, dimethyl ether, acetaldehyde, methyl formate, *tert*-butyl ethyl ether, *tert*-butyl methyl ether, propylene oxide, *sec*-butyl methyl ether, propionaldehyde, butyl methyl ether, *tert*-amyl methyl ether, butyl ethyl ether, isobutyraldehyde, tetrahydrofuran, ethyl ether, acetone, 2-butanone, ethyl alcohol, 1,4-dioxane, 2-propanol,2-butanol, 1-butanol were obtained from Sigma-Aldrich. Methyl alcohol and 1pentanol were obtained from Fisher Scientific. 450mL of cyclohexane was spiked with 1mL toluene and 1mL *p*-xylene. Another 450mL of cyclohexane was spiked with 5µL of other standards listed above (qualitative standard). Since dimethyl ether is a gas at STP, it was bubbled into the solution for 3 to 4 seconds via a piece of 1/8 inch tubing.

#### **Results and Discussion**

Toluene and p-xylene mixed standard was injected with an AOC20i autosampler without heartcutting. Two sets of chromatograms were obtained from the same single injection, as illustrated in Figures 4.1 and 4.2, from the 1<sup>st</sup> GC and the 2<sup>nd</sup> GC, respectively. One heart-cut window (the timing of valve switch) was then selected from 0.25min to 5.68 min by MDGC software. It is worth to note that operators no longer need to work blindly any more – a switching window was selected simply by making double clicks with a mouse. The resulting chromatograms are illustrated in Figures 5.1 and 5.2. Scrupulous chromatograms indicated excellent heart-cutting efficiency, and baseline fluctuation was negligible.



**Figure 4.1**: Chromatogram of toluene and p-xylene from the 1<sup>st</sup> GC without heart-cutting. Shaded area represents the cut-off region.

| 10.0 <mark>UV</mark> | Chromato | gram |     |      |      |      |      |      |      |     |
|----------------------|----------|------|-----|------|------|------|------|------|------|-----|
| 9.0                  |          |      |     |      |      |      |      |      |      |     |
| 8.0                  |          |      |     |      |      |      |      |      |      |     |
| 7.0                  |          |      |     |      |      |      |      |      |      |     |
| 6.0                  |          |      |     |      |      |      |      |      |      |     |
| 5.0                  |          |      |     |      |      |      |      |      |      |     |
| 4.0                  |          |      |     |      |      |      |      |      |      |     |
| 3.0                  |          |      |     |      |      |      |      |      |      |     |
| 2.0                  |          |      |     |      |      |      |      |      |      |     |
| 1.0                  |          |      |     |      |      |      |      |      |      |     |
| 0.0                  |          |      |     |      |      |      |      |      |      |     |
| -1.0                 | 2.5      | 5.0  | 7.5 | 10.0 | 12.5 | 15.0 | 17.5 | 20.0 | 22.5 | min |

Figure 4.2: Chromatogram of toluene and *p*-xylene from the 2<sup>nd</sup> GC without heart-cutting



Figure 5.1: *p*-Xylene was left behind on the 1<sup>st</sup> GC after cutting the cyclohexane and toluene peaks



**Figure 5.2**: Chromatogram of cyclohexane and toluene from the 2<sup>nd</sup> GC after cut. No *p*-xylene peak was observed.

Chromatograms of qualitative standard without heart-cutting were then obtained, as shown in Figures 6.1 and 6.2, respectively.







Figure 6.2: 2<sup>nd</sup> GC chromatogram of the qualitative standard before cut

Correspondingly, the 2<sup>nd</sup> GC chromatogram after cut is illustrated in Figure 7.1, and the peak table is listed in Figure 7.2. Ethyl ether was co-eluted with toluene; butyl ethyl ether and isobutyraldehyde were not baseline separated.



Figure 7.1: 2<sup>nd</sup> GC chromatogram of the qualitative standard

| ID# | Name                             | Туре   | Ret.Time | Band    | Conc.1 | Curve   | Zero    | Weigh   |
|-----|----------------------------------|--------|----------|---------|--------|---------|---------|---------|
| 1   | Cyclohexane                      | Target | 3.691    | Default | 1      | Default | Default | Default |
| 2   | Methyl ether                     | Target | 6.593    | Default | 1      | Default | Default | Default |
| 3   | Ethyl ether                      | Target | 8.682    | Default | 1      | Default | Default | Default |
| 4   | Acetaldehyde                     | Target | 8.939    | Default | 1      | Default | Default | Default |
| 5   | Methyl formate                   | Target | 9.570    | Default | 1      | Default | Default | Default |
| 6   | tert-Butyl ethyl ether           | Target | 9.673    | Default | 1      | Default | Default | Default |
| 7   | tert-Butyl methyl ether          | Target | 9.822    | Default | 1      | Default | Default | Default |
| 8   | Propylene oxide                  | Target | 10.040   | Default | 1      | Default | Default | Default |
| 9   | sec-Butyl methyl ether           | Target | 10.409   | Default | 1      | Default | Default | Default |
| 10  | Propionaldehyde                  | Target | 10.505   | Default | 1      | Default | Default | Default |
| 11  | Butyl methyl ether               | Target | 10.774   | Default | 1      | Default | Default | Default |
| 12  | tert-Amyl methyl ether           | Target | 10.993   | Default | 1      | Default | Default | Default |
| 13  | Butyl ethyl ether/lsobutylaldehy | Target | 11.232   | Default | 1      | Default | Default | Default |
| 14  | Tetrahydrofuran                  | Target | 11.422   | Default | 1      | Default | Default | Default |
| 15  | Methyl alcohol                   | Target | 12.501   | Default | 1      | Default | Default | Default |
| 16  | Acetone                          | Target | 12.878   | Default | 1      | Default | Default | Default |
| 17  | 2-Butanone                       | Target | 14.162   | Default | 1      | Default | Default | Default |
| 18  | Ethyl alcohol                    | Target | 14.355   | Default | 1      | Default | Default | Default |
| 19  | 1,4-Dioxane                      | Target | 14.947   | Default | 1      | Default | Default | Default |
| 20  | 2-Propanol                       | Target | 15.720   | Default | 1      | Default | Default | Default |
| 21  | 2-Butanol                        | Target | 16.803   | Default | 1      | Default | Default | Default |
| 22  | 1-Butanol                        | Target | 17.283   | Default | 1      | Default | Default | Default |
| 23  | 1-pentanol                       | Target | 18.628   | Default | 1      | Default | Default | Default |

Figure 7.2: Peak table of the qualitative standard, associated with the chromatogram of Figure 7.1

Repeatability study was conducted by making eight independent injections of the qualitative mixed standard, as shown in Figure 8, which yielded approximately 0.1% RSD for retention times and 5% RSD for peak areas.



Figure 8: 2<sup>nd</sup> GC Chromatograms from eight independent injections of the qualitative standard

To perform quantitative analysis, one point calibration was established by making six parallel valve injections of commercial Scott<sup>™</sup> liquid 2-butanone standard, illustrated in Figure 9. The average 2-butanone peak area was 19301, with a RSD% of 5.417%. No retention time shift was observed between syringe injections and valve injections.



Figure 9: 2<sup>nd</sup> GC chromatograms of six parallel valve injections of 2-butanone standard

An unknown sample was made by mixing qualitative standards, and it was used to demonstrate quantitative capabilities. The 2<sup>nd</sup> GC chromatogram is shown in Figure 10, and the calculation spread sheet is illustrated in Table 1.



Figure 10: 2<sup>nd</sup> GC chromatogram of an unknown sample via valve injection

| Name                                  | Retention<br>Time | Response<br>factor | Peak Area | RF Peak<br>Area | Concentration<br>(ppm) |
|---------------------------------------|-------------------|--------------------|-----------|-----------------|------------------------|
| Methyl ether                          | 6.593             | 1.278              | 61651     | 3.194           | 208.599                |
| Ethyl ether                           | 8.682             | 1.028              | 5264      | 0.273           | 14.327                 |
| Acetaldehyde                          | 8.939             | 1.222              | 1546      | 0.080           | 5.002                  |
| Methyl formate                        | 9.57              | 1.666              | 2308      | 0.120           | 10.180                 |
| tert-Butyl ethyl ether                | 9.673             | 0.945              | 9342      | 0.484           | 23.373                 |
| tert-Butyl methyl ether               | 9.822             | 0.978              | 6996      | 0.362           | 18.115                 |
| Propylene oxide                       | 10.04             | 1.074              | 11209     | 0.581           | 31.872                 |
| sec-Butyl methyl ether                | 10.409            | 0.978              | 3512      | 0.182           | 9.094                  |
| Propionaldehyde                       | 10.505            | 1.074              | 8127      | 0.421           | 23.109                 |
| Butyl methyl ether                    | 10.774            | 0.978              | 10805     | 0.560           | 27.977                 |
| tert-Amyl methyl ether                | 10.993            | 0.945              | 2085      | 0.108           | 5.216                  |
| Butyl ethyl<br>ether/Isobutyraldehyde | 11.232            | 0.945              | 17153     | 0.889           | 42.915                 |
| Tetrahydrofuran                       | 11.422            | 0.999              | 8201      | 0.425           | 21.691                 |
| Methyl alcohol                        | 12.501            | 1.778              | 1896      | 0.098           | 8.925                  |
| Acetone                               | 12.878            | 1.074              | 9684      | 0.502           | 27.536                 |
| 2-Butanone                            | 14.162            | 1                  | 7797      | 0.404           | 20.643                 |
| Ethyl alcohol                         | 14.355            | 1.278              | 3927      | 0.203           | 13.287                 |
| 1,4-Dioxane                           | 14.947            | 1.222              | 6955      | 0.360           | 22.501                 |
| 2-Propanol                            | 15.72             | 1.111              | 5157      | 0.267           | 15.169                 |
| 2-Butanol                             | 16.803            | 1.028              | 7181      | 0.372           | 19.544                 |
| 1-Butanol                             | 17.283            | 1.028              | 8063      | 0.418           | 21.945                 |
| 1-pentanol                            | 18.628            | 0.978              | 8547      | 0.443           | 22.131                 |
| Total                                 |                   |                    |           |                 | 613.150                |

Table 1: Calculation spreadsheet

UOP 960, as written, requires determination of dimethyl ether and other oxygenates in two separate runs. However, it seems clear that the MDGC method is capable of integrating the two-step procedures into one. Two 2<sup>nd</sup> GC chromatograms were compared between qualitative mixed standard and benzene spiked qualitative mixed standard, without toluene and p-xylene present. The results are shown in Figure 11, which suggests it is possible to determine both dimethyl ether and other oxygenates in a single run. However, optimized parameters may need to be further investigated when toluene is in present.





#### Conclusion

MDGC has demonstrated that it is possible to perform the separations of UOP 960 in a single run without an increase in cycle time, thus achieving a net reduction in total analysis time for laboratories engaged in determination of oxygenates. Qualitative and quantitative analysis have been successfully and easily achieved without compromising accuracy or precision. Moreover, Shimadzu MDGC simplified instrumental setup and configuration: heart-cut timings can be selected by double clicks with a mouse. Maintenance and troubleshooting are greatly simplified because of the presence of the inter-column detector which can be used to create or adjust a heart-cut region visually. Control data can be obtained automatically.

In addition to the time savings afforded by combining two procedures into one, as shown in this study, the fast oven cooling ability of Shimadzu GC-2010 Plus further reduced MDGC cycle time to less than 30 minutes per run. Finally, this study has demonstrated the feasibility of employing wide bore capillary columns into heart-cut MDGC applications. The demonstrated ruggedness, effectiveness, and greatly improved analytical economy of the method proposed here has opened the door to new MDGC applications, and has demonstrated great potential to improve productivity and shortened analysis time in refinery processes.

1) Deans, D. R. (1968) A new technique for heart cutting in gas chromatography. Chromatographia 1: 18-22

Shimadzu Scientific Instruments 7102 Riverwood Drive, Columbia, MD 21046 Phone: 800-477-1227, Fax: 410-381-1222 www.ssi.shimadzu.com webmaster@shimadzu.com