

# Application News

### No. HPLC-028

Introduction

Currently, HPLC with UV and photodiode array detection is widely applied for the analysis of cannabinoids in cannabis and hemp as the approach is relatively easy and inexpensive. With growing interest in cannabis- and hemp-based products and their inherent complexity, the analytical benefits of LC-MS, such as higher sensitivity, selectivity, and mass identification are increasingly recognized for the determination of cannabinoids.

Triple quadrupole LC-MS/MS methods have been applied to cannabis applications. When using multistage MS, a precursor ion is selected and fragmented in a collision cell. The collision-induced dissociation (CID) used in MS/MS can be used for structural determination. Fragmentation is also possible using single quadrupole MS, called source-induced dissociation (SID). SID is also referred to as in-source fragmentation or in-source CID (IS-CID). The information resulting from SID of cannabinoids can provide mass identification and specificity compared to HPLC/UV detectors.

For this study, an IS-CID method was developed using a single quadrupole MS with an integrated LC front end for chromatographic separation for 16 cannabinoids, including  $\Delta$ 9-tetrahydrocannabinol ( $\Delta$ 9-THC),  $\Delta$ 8-tetrahydrocannabinol ( $\Delta$ 8-THC), cannabidiol (CBD), cannabigerol (CBG), cannabinol (CBN), cannabicyclol (CBL), and their respective acidic forms etc. Both positive and negative scans and selected ion monitoring (SIM) were used simultaneously in the method and a MS library for the 16 cannabinoids was created for the rapid identification of target analytes in unknow samples.

#### Experimental

#### Equipment

Experiments were performed using a Shimadzu integrated HPLC (2040C 3D) and a single quadrupole mass spectrometer detector (LCMS-2020) with electrospray ionization (ESI) interface.

High Performance Liquid Chromatography

### In-Source Fragmentation of 16 Cannabinoids Using Single Quadrupole LC-MS

#### Materials

A mixture of 16 cannabinoids was prepared using an 11-component mixture (Shimadzu 220-91239-21) with five additional individual cannabinoids obtained from Sigma Aldrich (Cerilliant). LCMS grade solvents, formic acid and ammonium formate were obtained from Honeywell. Degassed deionized water was used (>18.0 M $\Omega$ -cm). Standards were prepared by diluting with 90% mobile phase B and 10% DI.

#### HPLC-MS Conditions

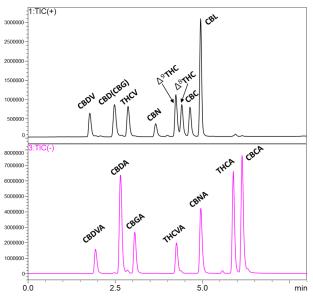

The method conditions for both HPLC and MS are shown in Table 1.

Table 1: Method Conditions

| LC (2040C 3D)         |                                                                                                                           |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------|
| Column                | Shimadzu NexLeaf CBX ΙΙ, 1.8 μm,<br>3.0 x 100mm (220-91525-75)<br>Shimadzu NexLeaf CBX ΙΙ Guard,<br>1.8 μm (220-91525-76) |
| Mobile phase A        | 0.1% formic acid and 5 mM<br>ammonium formate in 100%<br>water                                                            |
| Mobile phase B        | 0.1% formic acid in 50% methanol/50% acetonitrile                                                                         |
| Flow rate             | 0.5 mL/min                                                                                                                |
| Oven                  | 30 ℃                                                                                                                      |
| Injection volume      | 5 μL                                                                                                                      |
| Gradient              | 83% mobile phase B to 98% mobile phase B in 6.5 min.                                                                      |
| MS (LCMS-2020)        |                                                                                                                           |
| lonization            | ESI                                                                                                                       |
| Interface temperature | 350 °C                                                                                                                    |
| DL temperature        | 250 °C                                                                                                                    |
| Nebulizing gas flow   | 15 L/min                                                                                                                  |
| Heat block            | 400 °C                                                                                                                    |
| Drying gas flow       | 1.5 L/min                                                                                                                 |
| Qarray DC voltage     | 55 V                                                                                                                      |

#### Results and Discussion

Figure 1 shows the separation of 16 cannabinoids. Under the conditions of the experiment, neutral cannabinoids such as  $\Delta$ 9-THC, CBD, and CBL ionize in positive mode while their respective acidic forms ionize in negative mode. Although CBD and CBG coelute from the column, their molecular weights differ and mass identification can be obtained from mass spectra as shown in figure 2. In addition, figure 3 shows that the SID fragmentation patterns from CBD and CBG are quite different using the method developed here. These more specific results show the advantage of LCMS over LC/UV in cannabinoids analysis.



**Figure 1**: Separation chromatogram of 16 cannabinoid standards mixture (10 ppm each)

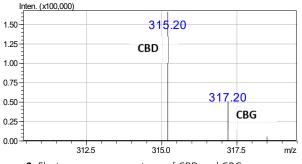



Figure 2: Electrospray mass spectrum of CBD and CBG

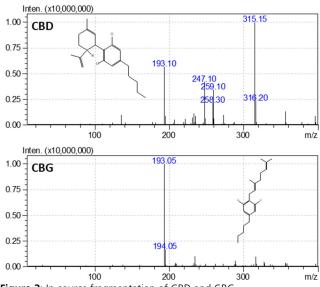
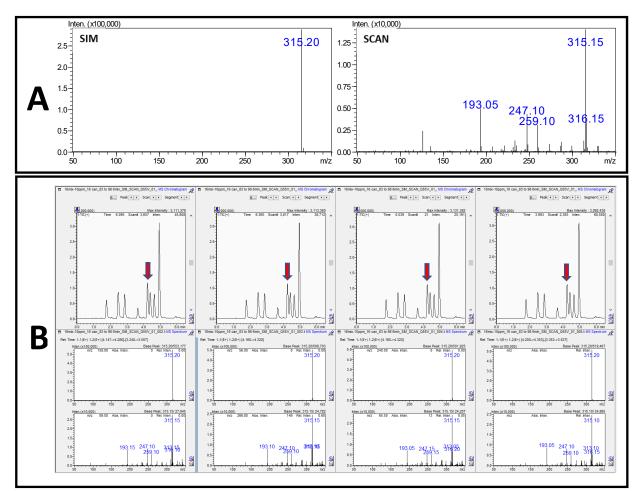
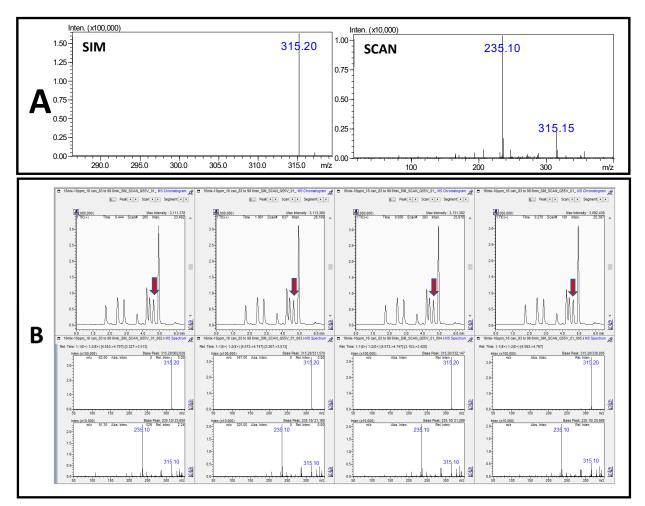




Figure 3: In-source fragmentation of CBD and CBG.

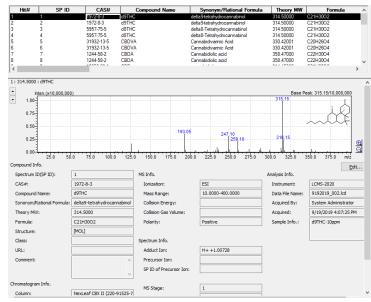

#### Method Reproducibility

In-source fragmentation in single-quad MS is performed by manipulating the DC voltage of the Qarray, which is the first focusing optic after the desolvation line. It was noticed that increasing the Qarray voltage will produce more fragmentation, but continued voltage increases eventually result in an absence of fragmentation. In order to get the most reliable SID fragmentation for all 16 compounds in the study, Q-array DC voltage was optimized at different event times. Through trial and error, a Qarray DC voltage of 55 volts and an event time of 0.1 second were chosen for the method.

Experimental results show that even though some cannabinoids have the same mass and similar structure, different mass spectra patterns are obtained for the 16 compounds. In addition, SID fragmentation depends on sample matrix. Optimization of the fragmentation method may be necessary on a case-by-case basis. To test the reproducibility and reliability of the method, four injections of the 16-cannabinoids mixture were performed. The mass spectrum of each cannabinoid was compared with mass spectra from the individual standards. Reproducible and consistent fragmentation was observed for the 16 cannabinoids from both individual and mixed standards. Figures 4 and 5 are comparison results from  $\Delta$ 9-THC and CBL, respectively. Panel A in both figures is the spectrum from individual standard injections, and panel B shows the results from four injections of a mixed sample. As shown in both Fig. 4 and Fig. 5, very reproducible fragmentation is obtained from four injections of mixed 16 cannabinoids for both  $\Delta$ 9-THC and CBL, and fragmentation patterns are also consistent with spectra obtained from individual cannabinoid standard injections.



**Figure 4** Electrospray mass spectrum of  $\Delta$ 9-THC. Panel A is the result from single  $\Delta$ 9-THC standard injection; the left spectrum in panel A is the mass spectrum of product ions, the right spectrum in panel A is the mass spectrum of product ions from in-source fragmentation. Panel B is the comparison results of  $\Delta$ 9-THC from four injections of 16 mixed cannabinoids.




**Figure 5** Electrospray mass spectrum of CBL. Panel A is the result from single CBL standard injection; the left spectrum in panel A is the mass spectrum of product ions from in-source fragmentation. Panel B is the comparison results of CBL from four injections of 16 mixed cannabinoids.

#### Mass spectral library

A mass spectral library with both molecular weight and fragmentation information for 16 cannabinoids used in this study was created. Figure 6 is an example of a product ions spectrum of  $\Delta$ 9-THC built in the library. The spectral library can be a useful tool to identify unknow samples.

Figure 6: LC/MS electrospray product ions spectrum of Δ9-THC in library



#### Conclusion

An in-source fragmentation method was developed using the Shimadzu single quadrupole MS to analyze 16 cannabinoids, including  $\Delta$ 9-tetrahydrocannabinol ( $\Delta$ 9-THC),  $\Delta$ 8-tetrahydrocannabinol ( $\Delta$ 8-THC), cannabidiol (CBD), cannabigerol (CBG), cannabinol (CBN), cannabicyclol (CBL) and their respective acidic forms. This method shows the added benefit of mass spectrometry to the analysis of cannabinoids by providing more confident results with mass identification and library matching.



## SHIMADZU Corporation www.shimadzu.com/an/

#### SHIMADZU SCIENTIFIC INSTRUMENTS

7102 Riverwood Drive, Columbia, MD 21046, USA Phone: 800-477-1227/410-381-1227, Fax: 410-381-1222 URL: www.ssi.shimadzu.com First Edition: October 2019

The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu. Shimadzu disclaims any proprietary interest in trademarks and trade names used in this publication other than its own. See http://www.shimadzu.com/about/trademarks/index.html for details.

This publication may contain references to products that are not available in your country. Please contact us to check the availability of

For Research Use Only. Not for use in diagnostic procedure

these products in your country.

The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject