# 🕀 SHIMADZU

# **Application News**

## Gas Chromatography

#### SSI-GC-001

## High Temperature Simulated Distillation using Shimadzu GC-2010

#### Introduction

ASTM D 7169, a simulated distillation GC (DGC) method that extends the boiling point profile up to 720°C (corresponding to the elution of n-C100), is used in the petro-refinery industry to monitor the refining process of a feedstock by profiling the boiling point distribution characteristics.

Differing from existing ASTM DGC methods such as D2887, 3710, 5307, 6352, etc, D7169 is for crude oil applications, primarily targets at high boilers that do not easily elute out of a GC column. In this study, a Shimadzu GC-2010 based DGC system was employed to determine boiling point distribution of crude oil samples.

#### **Principle**

To improve productivity, DGC methods have been widely practiced to replace old distillation methods such as D86 and D1160, which are time and labor consuming, and also require complicated operating procedures. In DGC methods, retention times are directly correlated to boiling points and detector responses are correlated to the hydrocarbon concentrations.

A calibration curve can be generated by plotting boiling points of n-alkanes as a function of retention times, and sliced peak intensities represent the sample amount distilled. To do so, reproducible retention times and automated software are highly desirable. The GC-2010, equipped with an advanced flow controller, meets the hardware requirements, and Shimadzu distillation GC software for GCsolution is able to achieve automation by integrating calibration, integration, calculation, and report functions.





#### **Experimental**

| GC system:  | Shimadzu GC-2010, OCI/PTV injector, FID detector, AOC-20i/20s autosampler.       |
|-------------|----------------------------------------------------------------------------------|
| Software:   | Shimadzu GCsolution 2.31 and Distillation GC software 2.00                       |
| Column:     | Restek MXT-1HT, 5m X 0.53mm X 0.2µm                                              |
| Inj. Liner: | Stainless steel OCI liner                                                        |
| Inj.:       | 0.2 µL Direct, He carrier, Column Flow: 18.00mL/min; Purge Flow: 0.5mL/min.      |
| Inj. Temp:  | 40°C to 430°C @ 10°C/min, hold 5 min                                             |
| Oven Temp:  | 35.0°C to 430°C @ 10°C/min, hold 10 min                                          |
| DET Temp:   | 430°C, He Makeup, Makeup 12.0mL/min, H <sub>2</sub> 40.0mL/min, Air 400.0mL/min. |
|             |                                                                                  |

#### **Sample Preparation**

**Standard samples**: Prepared 0.5% Polywax 655  $CS_2$  solution, then mixed with equal volume of D2887 SimDist standard. Both Polywax 655 and D2887 standards are from AccuStandard. **Sample Pretreatment**: 0.2g sample were measured and dissolved in 20 mL  $CS_2$ . Three replicate runs were conducted from different 1.5mL vials. A solvent blank run was performed between each sample as a negative control. The solvent blank was also subtracted from sample chromatograms when processing the data.

### Chromatograms



Figure 1: Chromatogram of ASTM D2887 Standard



Figure 2: Chromatogram of Polywax 655 Standard



Figure 3: Chromatogram of ASTM D2887 Standard plus Polywax655



Figure 4: Solvent blank



Figure 5: Reproducibility Study: RSD% < 0.05% for most of the peaks



Figure 6: Chromatogram of Sample I



Figure 7: Chromatogram of Sample II



Figure 8: Chromatogram of Sample III

### **Calculations and Report**



**Figure 9**: Calibration curve: Boiling point *vs.* retention time, calibration curve is calculated by the software, based on n-paraffin chromatography

| 📲 Distilla                | ation GC In                        | itial Setti   | ng(GC 1)-                  | [C:\GC | solution \                | dgc1\par.         | ×       |  |  |
|---------------------------|------------------------------------|---------------|----------------------------|--------|---------------------------|-------------------|---------|--|--|
| <u>F</u> ile <u>E</u> dit | <u>H</u> elp                       |               |                            | C      | istillation GC Ini        | tial Setting(GC 1 | .)-[C:\ |  |  |
|                           | 6 🖻 💼                              |               |                            |        |                           |                   |         |  |  |
| Entry                     | Parameter File Setting             |               |                            |        |                           |                   |         |  |  |
|                           | FILE : 7169.PAR                    |               |                            |        |                           |                   |         |  |  |
| Calibration<br>Initial    | Method :                           | Total Area    |                            | -      |                           |                   |         |  |  |
| Setting                   | ASTM Correction Terminus Automatic |               |                            |        |                           |                   |         |  |  |
|                           | O D-86                             | 30 EFV        | /TBP Correcti              | on     | Variety<br>Proportion(%): | 0.010             |         |  |  |
| Parameter<br>File Setting | Internal Star                      | ndard Range ( | C):                        |        |                           |                   |         |  |  |
| The Setting               | IBP                                | FBP           | Upper Limit<br>Temperature | e      |                           |                   |         |  |  |
|                           | 240.                               | 0 310.        | 0 720.                     | 0      |                           |                   |         |  |  |
| Report File               | Number of                          | Specified Te  | mperature Ra               | ange : | 1                         | (C)               |         |  |  |
| Setting                   | Range                              | IBP           | FBP                        | Range  | IBP                       | FBP               |         |  |  |
|                           | 1                                  | 0.0           | 720.0                      | 6      |                           |                   |         |  |  |
|                           | 2                                  |               |                            | 7      |                           |                   |         |  |  |
|                           | 3                                  |               |                            | 8      |                           |                   |         |  |  |
|                           | 4                                  |               |                            | 9      |                           |                   |         |  |  |
|                           | 5                                  |               |                            | 10     |                           |                   |         |  |  |

Figure 10: Parameter settings







Figure 12: Simulated distillation curve

#### \*\*\*\* BOILING RANGE DISTRIBUTION \*\*\*\*

| SAMPLE NAME         | VTB                                        |
|---------------------|--------------------------------------------|
| SAMPLE ID           | 10-027                                     |
| SAMPLE TYPE         | UNKNOWN                                    |
| ANALYSIS TIME       | 0201/03/24_0_8:40:22 PM                    |
| TOTAL AREA          | TOTAL AREA                                 |
| OUTPUT FILE         | C:\GCsolution\dgc1\data\VTB1.DAT           |
| CALIBRATION FILE    | C:\GCsolution\dgc1\Calib\SIM_High_Temp.CLB |
| PARAMETER DATA FILE | C:\GCsolution\dgc1\PARM\7169.PAR           |
| REPORT DATA FILE    | C:\GCsolution\dgc1\PARM\7169.REP           |
|                     | o.icostatornagorie Antini ros.nee          |

#### GC DATA

| %OFF  | BP      | BP              | Rt<br>(min) |     |
|-------|---------|-----------------|-------------|-----|
|       | (0)     | ())             | 1207        |     |
|       | 374.0   | 700.2           | 15.07       |     |
|       | 400.5   | 702.0           | 17.24       |     |
| 2     | 433.5   | 8295            | 18.21       |     |
| <br>  | 440.0   | 8597            | 18.99       |     |
| 5     | 468.9   | 876.0           | 19.62       |     |
| 10    | 498.0   | 9285            | 21 71       |     |
| 15    | 5161    | 9610            | 23.05       |     |
| 20    | 530.6   | 9871            | 24 12       |     |
| 25    | 542.4   | 1008.3          | 25.02       |     |
| 30    | 55.3.2  | 10278           | 25.83       |     |
| 35    | 563.3   | 1046.0          | 26.61       |     |
| 40    | 572.6   | 1062.7          | 27.36       |     |
| 45    | 582.1   | 1079.7          | 28.12       |     |
| 50    | 591.2   | 1096.2          | 28.88       |     |
| 55    | 600.7   | 1113.3          | 29.67       |     |
| 60    | 610.6   | 1131.1          | 30.48       |     |
| 65    | 620.4   | 1 <b>1</b> 48.8 | 31.33       |     |
| 70    | 631.1   | 1168.0          | 32.22       |     |
| 75    | 641.7   | 1187.0          | 33.18       |     |
| 80    | 653.8   | 1208.8          | 34.22       |     |
| 85    | 667.0   | 1232.5          | 35.33       |     |
| 90    | 682.4   | 1260.3          | 36.57       |     |
| 95    | 698.7   | 1289.7          | 38.02       |     |
| 96    | 703.0   | 1297.4          | 38.34       |     |
| 97    | 707.6   | 1305.6          | 38.67       |     |
| 98    | 712.3   | 1314.2          | 39.03       |     |
| 99    | 717.5   | 1323.6          | 39.41       |     |
| L FBP | 720.3   | 1328.6          | 39.61       |     |
| VABP  | 591.194 | (C)             | 1096.149 (  | (F) |

Figure 13: Simulated distillation data

#### Discussions

Robust hardware and automated software are critical to ASTM D7169. The GC-2010, with an advanced flow controller running at 'Linear velocity' mode, has proved to be effective. The reproducibility study has shown retention time RSD% are less than 0.05% for most of the peaks, except for low and high boilers, as shown in Figure 5. The adoption of a CO<sub>2</sub> cryo-cooling unit could potentially lower the initial boiling point to 0°C (corresponding to n-C4). However, this configuration has not been investigated in this study. With improved GC column technology, seeing n-C100 is no longer a problem. It is worth to note though, heterogeneous sampling may affect final results. One abnormal result observed during the study is that it disagreed with the other two parallel runs. In this case, the results from the other two runs can be considered to be accurate results. Additional runs can be performed to further confirm the results.

DGC software has achieved fully automated data analysis. Two data processing methods were adopted. First, a calibration method was used to generate a calibration curve, establishing correlations between retention times and alkane boiling points, as illustrated in Figure 9. Second, an integration method was created to define an integration retention window and make slice cuts. Then the results can be automatically calculated and reported, depicted in Figures 10 to 13.

Furthermore, solvent blank runs are important not only to verify the system cleanness but also to compensate for baseline drifts by being subtracted from sample chromatograms to obtain undistorted DGC results.

#### Conclusions

The robust GC-2010 hardware, integrated with Distillation GC software, has achieved fully automated DGC boiling points determination, in compliance with method ASTM D 7169. The reproducibility study has shown retention time RSD% are less than 0.05% for most of the peaks, except for low and high boilers.

#### References

- (1) Shimadzu Application Note "Simulated Distillation Analysis of Heavy Canadian Crude Oil by ASTM D 5307", 2009.
- (2) ASTM D7169-05 "Standard Test Method for Boiling Point Distribution of Samples with Residues Such as Crude Oils and Atmospheric and Vacuum Residues by High Temperature Gas Chromatography", September 2005.

Shimadzu Scientific Instruments 7102 Riverwood Drive, Columbia, MD 21046 Phone: 800-477-1227, Fax: 410-381-1222 www.ssi.shimadzu.com webmaster@shimadzu.com