

Application News

GCMS-QP2050 Gas Chromatograph Mass Spectrometer

Analysis of Semivolatile Organic Compounds by Single Quadrupole GCMS-QP2050 Following EPA 8270E

User Benefits

- The GCMS-QP2050 meets quality control criteria for the instrument and initial calibration curve as outlined in EPA 8270E.
- Excellent sensitivity was demonstrated for the Semivolatile Organic Compounds targeted, including early eluting 1,4-Dioxane to later eluting Benzo(g,h,i)perylene
- Scan/SIM capability supports quantitative analysis and identification of unknown compounds in samples through library searches.

Abstract

This application note evaluates the performance of the GCMS-QP2050 single quadrupole gas chromatography mass spectrometer for the analysis of semivolatile organic compounds (SVOCs) listed in EPA 8270E. All compounds met the calibration criteria determined in EPA 8270E (reference 1), with an average detection limit 10 times lower than those normally reported as vial concentration.

Introduction

Semivolatile Organic Compounds (SVOCs) are routinely analyzed in multiple environmental matrices by environmental laboratories. SVOCs listed in 8270E contain various classes of compounds such as Phenols, Phthalates, and PAHs. In this study, the performance of Shimadzu's GCMS-QP2050 system for the simultaneous analysis of SVOCs included in EPA 8270E was evaluated. The fast scan speed of the GCMS-QP2050 allows for simultaneous Scan/SIM analysis. Using Scan, spectrum information with accurate quantitative results was acquired.

Experimental

Standard Solutions

Commercially available analytical standards were mixed to prepare a stock analyte solution, Internal Standard (IS) solution, and surrogate solution. The standards purchased are listed in Table 1.

Calibration Range and Method Conditions

Calibration standards were prepared to cover a wide calibration range (0.01 ppm to 20 ppm) with 11 calibration levels. This instrument was installed with a 30m Restek Rxi-SVOCms column with 0.25mm and a 0.25um film thickness.

This column is designed specifically for SVOCs analysis and achieves good peak shape and resolution for isomers. Constant linear velocity mode was chosen as GC flow control to get better peak separation.

Table 1: Standard products used in this study.

Туре	Vendor	P/N	Product name			
			8270 MegaMix			
Analyte	Restek	31850	Standard (76			
			compounds)			
Analyte	Restek	31834	Benzidine Mix (2 comp.)			
Applyto	Analyta 235 110002.01		CLP 4.2			
Analyte	0231	110-202-01	Additional Comp.			
Δnalvte	Millipore	CRM48367	1,4-Dioxane solution			
7 thatyte	Sigma	CI(III-0507				
Analyta	Millipore	CRM47508 Benzoic Acid Solutio				
Analyte	Sigma	CI(()147 500				
IS	Millipore	C RN/18902	EPA 8270 Semivolatile			
CI	Sigma	CI/IVI40902	Internal Standard Mix			
Surrogato	Millipore	C RM/17960	EPA 8270 Surrogate			
Sunoyate	Sigma	CINI47900	Standard			

Table 2: GC and MS conditions.

GC conditions					
Injection Temp.	275 °C				
Injection Mode	Split (1:10)				
Column Flow	1.2 mL/min				
Flow Control Mode	Linear Velocity				
Column	Rxi-SVOCms (30m x 0.25 mm, 0.25 μm)				
Oven Temp.	40 °C (1 min) ->20 °C/min to 280 °C -> 5 °C to 320 °C Total run: 21 min				
Carrier Gas	Helium				
MS conditions					
Solvent Cut Time	2 min				
Ion Source Temp.	230 °C				
Interface Temp.	320 ℃				
Detector Voltage	+0.15 kV (relative to Tuning)				
Analysis Type	Scan/SIM simultaneous				
TMP Speed	255 L/sec				

Results and Discussion

System Validation before Analysis

Before injecting the calibration standards, EPA 8270E requires confirming the status of the instrument through a DFTPP spectrum pattern check for assessing the MS condition (Figure 1) and evaluating the tailing factor of Benzidine and Pentachlorophenol for checking the column condition (Figure 2).

Inertness of the injection port, evaluated by checking the degradation of DDT, was not included in this study because reactive compounds (e.g., organochloride pesticides) were not included in this study. As a result, GCMS-QP2050 passed all criteria outlined by 8270E.

Comp. Name : DFTPP Ret. Time : [11.210->11.220]-[11.180<->11.285]

m/z	Criteria	Rel. Int.	Abs. Int.	Status
68	< 2% of mass 69	1.22	1072	Pass
69	Present	19.57	88105	Pass
70	< 2% of mass 69	0.56	489	Pass
197	< 2% of mass 198	0.25	1125	Pass
198	Base peak or present	100.00	450208	Pass
199	5 - 9% of mass 198	6.55	29500	Pass
365	> 1% of the base peak	1.54	6941	Pass
441	< 150% of mass 443	82.00	52358	Pass
442	Base peak or present	77.59	349315	Pass
443	15 - 24% of mass 442	18.28	63853	Pass

Figure 1: DFTPP spectrum pattern check result: Pass

Figure 2: Benzidine and Pentachlorophenol tailing factor check result: Pass (Criteria is 2.0).

Validation of Resolution

During calibration data acquisition, resolution of isomers was confirmed with the Benzo(b)fluoranthene and Benzo(k)fluoranthene pair. As shown in Figure 3, the resolution was 25%, exceeding acceptance criteria from EPA 8270E (50%) (Figure 3).

Benzo(b)fluoranthene Resolution:25%

Figure 3: 0.01ppm resolution result: Pass

Table 3: Validation and Accuracy result of each calibration curve

Validation of Calibration Curve

- Calibration points are recommended to be within ±30% of the true value when recalculated with the calibration curve, except the lowest standard, for which the acceptance criteria is ±50%.
- 2) For the average RF calibration model, Relative Standard Deviation (RSD) of Response Factors (RFs) must be less than 20%
- For linear and quadratic¹ calibration curves, R2 must be ≥0.99 and Relative Standard Error (RSE) must be <20%.

¹Use of a quadratic calibration curve requires at least 6 calibration levels. Acceptable calibration curves must meet criteria #1, and either criteria #2 or #3.

For some of the targeted compounds, like 2,4-Dinitrophenol and Benzoic acid, which are problematic compounds, a weighted calibration curve (using as weight: $1/x^2$) provides better results for meeting criteria #1. This approach is acceptable and recommended in EPA 8000D (Determinative Chromatographic Separations). Calibration standards with a calculated value that exceeded criteria #1 were omitted from the final calibration curve of each compound. Table 3 is result for this application. As shown, all compounds meet the criteria.

	Curve fit	Lowest point (ppm)	Highest point (ppm)	RSE	R2	%Accuracy at lowest point
1,4-Dioxane	Average RF	0.01	20	8.3		111
N-Nitrosodimethylamine	Average RF	0.02	20	8.9		87
Pyridine	Quadratic	0.1	20	5.2	0.9974	101
2-Fluorophenol	Average RF	0.01	20	6.3		105
Benzaldehyde	Average RF	0.01	20	6.4		108
Phenol-d5	Average RF	0.01	20	4.9		100
Phenol	Average RF	0.01	20	5.8		109

Aniline	Average RF	0.01	20	11.6		79
Bis(2-chloroethyl)ether	Quadratic	0.01	20	9.4	0.9913	109
2-Chlorophenol	Average RF	0.01	20	5.3		103
1,3-Dichlorobenzene	Average RF	0.01	20	7.7		109
1,4-Dichlorobenzene	Average RF	0.01	20	7.7		110
Benzyl Alcohol	Average RF	0.01	20	6.6		101
1.2-Dichlorobenzene	Average RF	0.01	20	7.9		109
2-Methylphenol(o-Cresol)	Average RF	0.01	20	5.1		101
Bis(2-chloro-1-methylethyl) ether	Average RF	0.01	20	8.8		118
3-Methylphenol (m-Cresol)/4-	Average RF	0.01	20	75		99
Methylphenol(p-Cresol)	, weruge in	0.01	20	7.0		
N-nitroso-di-n-propylamine	Average RF	0.01	20	6.5		95
Hexachloroethane	Average RF	0.01	20	11.9		125
Nitrobenzene-D5	Average RF	0.01	20	79		104
Nitrobenzene	Average RF	0.01	20	14.2		91
Isophorone	Average RF	0.01	20	8.8		96
2-Nitrophenol	Average RF	0.01	20	15.2		91
2 4-Dimethylphenol	Average RF	0.01	20	6.6		99
Benzoic Acid	Quadratic	0.1	10	8.2	0 9916	98
Bis(2-chloromethoxy)methane	Average RF	0.01	20	5.9	0.9998	108
2 4-Dichlorophenol	Average RF	0.01	20	73		116
1 2 4-Trichlorobenzene	Average RF	0.01	20	10.1		117
Nanhthalene		0.01	10	77		111
A-Chloroanilino	Average Ri Average RF	0.01	20	5.5		96
4-Chioroannine Hexachlorobutadione	Average RI	0.01	20	J.J 12 1		90 121
Caprolactam	Average Ni Quadratic	0.01	20	72	0.0052	10/
4 Chloro 2 mothylphopol		0.1	20	7.Z 9.7	0.9952	104
4-Chiolo-5-methylphenol	Average RE	0.01	20	0.7 7.0		107
2-Methylnaphthalene	Average RF	0.01	20	7.0		107
Heyesblerecuslopentadione	Average RF	0.01	20	7.Z E 0		100
	Average RF	0.01	20	0.0 0.0		94
2,4,6-Inchlorophenol	Average RF	0.01	20	0.0		102
2,4,5-Inchiorophenoi	Average RF	0.01	20	11.0		89
2-Fluorodiphenyi	Average RF	0.01	20	8.7		109
1, I -Biphenyi	Average RF	0.01	10	8.3		110
2-Chioronaphthalene	Average RF	0.01	20	8.0		104
	Average KF	0.01	10	15.1		104
1,4-Dinitropenzene		0.01	10	9.7	0.9913	105
Dimetnyi phinalate	Average RF	0.01	20	9.0		102
1,3-Dinitrobenzene	Quadratic	0.02	Z	9.3	0.9926	102
2,6-Dinitrololuene	Quadratic	0.05	5	10.1	0.9926	102
1,2-Dinitropenzene		0.02	5	8.8	0.9935	104
	Average KF	0.01	20	10.0	0.0025	105
3-INITOdrilline		0.1	10	10.5	0.9935	105
Acenaphinene	Average RF	0.01	20	10.6		105
2,4-Dinitrophenoi	Quadratic	0.2	20	9.7	0.9913	105
4-INItrophenol	Quadratic	0.2	20	9.3	0.9931	8/
2,4-DINITOLOIUENE		0.02	2	0.U	0.9945	101
Dibenzoturan	Average RF	0.01	10	8.3		112
2,5,5,6-1etrachiorophenol	Average KF	0.01	20	10.0		130 120
2,3,4,6-1etrachiorophenol	Average KF	0.01	20	13.4		120
Diethyl Phthalate	Average RF	0.1	20	12.2		124
Fluorene	Average RF	0.01	10	9.5		116
4-Chlorophenyl-phenyl ether	Average RF	0.01	20	12.1		113
4-Nitroaniline	Average KF	0.01	20	17.9		95
4,6-Dinitro-2-methylphenol	Quadratic	0.1	10	9.5	0.9931	10/
Jipnenyiamine	Average KF	0.01	20	/./		108
Azopenzene	Average KF	0.01	20	12.0		91
2,4,6-Tribromophenol	Average RF	0.02	20	8.6		112
4-Bromophenyl phenyl ether	Average KF	0.01	20	9.0		111
Hexachlorobenzene	Average RF	0.01	20	13.5		121
Atrazine	Average RF	0.01	20	8.6		94
Pentachlorophenol	Average RF	0.05	20	15.7		125
Phenanthrene	Average RF	0.01	10	7.8		112
Anthracene	Average RF	0.01	10	5.8		100

Carbazole	Average RF	0.01	10	6.2		102
Di-n-butyl phthalate	Average RF	0.01	10	10.4		96
Fluoranthene	Average RF	0.01	10	5.6		103
Benzidine	Quadratic	0.05	10	10.1	0.9914	105
Pyrene	Average RF	0.01	10	6.0		101
p-Terphenyl-d14	Average RF	0.01	10	6.8		100
Butyl benzyl phthalate	Average RF	0.01	10	15.6		97
Bis(2-ethylhexyl) adipiate	Quadratic	0.01	2	7.7	0.9942	104
3,3'-Dichlorobenzidine	Average RF	0.01	20	9.6		100
Benzo[a]anthracene	Average RF	0.01	20	12.6		125
Chrysene	Average RF	0.01	20	10.9		118
Bis(2-ethylhexyl) phthalate	Quadratic	0.01	2	10.4	0.9944	104
Di-n-octyl phthalate	Quadratic	0.01	10	10.4	0.9912	105
Benzo(b)fluoranthene	Average RF	0.01	10	5.2		107
Benzo(k)fluoranthene	Average RF	0.01	10	12.8		123
Benzo(a)pyrene	Average RF	0.01	10	8.8		119
Indeno(1,2,3-cd)pyrene	Average RF	0.01	20	12.2		132
Dibenzo(a,h)anthracene	Average RF	0.01	20	16.20		142
Benzo(g,h,i)pyrelene	Average RF	0.01	20	15.97		131

Validation of Scan Result

In this study, the Scan/SIM simultaneous method setting was used to obtain qualification information without losing SIM sensitivity. The total ion chromatograph is shown in Figure 4. Accurate Mass Spectrum information was obtained at the same time with SIM accurate quantification analysis. As examples, Figure 5 shows the mass spectrum of representative compounds with different boiling points (low: 1,4- dioxane, middle: 3-Nitroaniline, high: Benzo(g,h,i)pyrelene). The excellent score demonstrates the suitability of Scan/SIM despite the complexity of the chromatogram.

Conclusion

This study demonstrates the capabilities of Shimadzu's GCMS-QP2050 for the analysis of SVOCs. The GCMS-QP2050 meets routine system check and initial calibration requirements as specified by USEPA method 8270E. Because of the high performance of this single quadrupole instrument, a calibration range (0.01 ppm to 20 ppm), 10 times lower than commonly reported concentrations (0.2 ppm to 200 ppm), can be analyzed. This enables environmental laboratories to modify their sample preparation workflow by using a higher split ratio, reducing the initial sample volume or injection volume, while maintaining desired performance and reducing maintenance frequency.

Moreover, simultaneous Scan/SIM data acquisition can be performed with the GCMS-QP2050 without loss of sensitivity in SIM mode. With a single injection, accurate quantitative analysis can be done at the same time as the tentative identification of the sample components as outlined in EPA 8270E.

Reference

1) USEPA 8270E 8270e revised 6 june 2018.pdf (epa.gov)

SHIMADZU Corporation www.shimadzu.com/an/

SHIMADZU SCIENTIFIC INSTRUMENTS

7102 Riverwood Drive, Columbia, MD 21046, USA Phone: 800-477-1227/410-381-1227, Fax: 410-381-1222 URL: www.ssi.shimadzu.com

SSI-GCMS-2401 First Edition: March 2024

For Research Use Only. Not for use in diagnostic procedures. This publication may contain references to products that are not available in your country. Please contact us to check the availability of these products in your country.

The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu, See http:// ut/trademarks/index.html for details

Third party trademarks and trade names may be used in this publication to refer to either the entities or their products/services, whether or not they are used with trademark symbol "TM" or "®". Shimadzu disclaims any proprietary interest in trademarks and trade names other than its own.

The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice

