

Application News

LCMS[™]-8060NX High Performance Liquid Chromatograph Mass Spectrometer Nexera[™] series High Performance Liquid Chromatograph

Determination of 30 PFAS in Milk by Liquid Chromatography Triple Quadrupole Mass Spectrometry (LC-MS/MS)

William Lipps¹, Toshiya Matsubara¹, Dominika Gruszecka¹, Nozomi Maeshima², Yui Higashi², Manami Kobayashi² ¹ Shimadzu Scientific Instruments, Inc., ² Shimadzu Corporation

User Benefits

- ◆ Validated method for 30 PFAS in Milk meeting all criteria of AOAC SMPR 2023.003
- High precision, excellent recovery, low Limit of Quantification (LOQ)
- Simple and rapid extraction using QuEChERS

Introduction

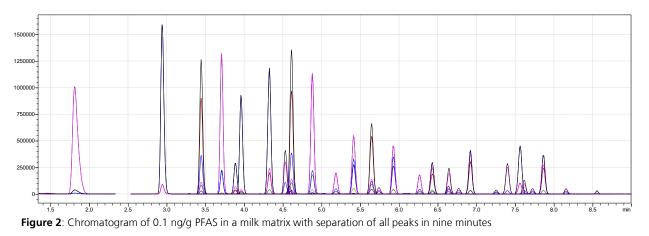
Per-and polyfluorinated substances (PFAS) are a diverse group of man-made chemicals used in numerous products since the 1950s. PFAS can enter the food supply by contact in environmentally contaminated areas, during food processing, or exposure to packaging. Because PFAS have been linked to serious health effects, accurate methodology is needed. In this application news, we describe a single laboratory validation study with a rapid extraction of low concentrations of 30 PFAS in milk using the QuEChERS technique followed by analysis using the Shimadzu Nexera Liquid Chromatograph coupled to a Shimadzu LCMS-8060NX triple quadrupole mass spectrometer (Figure 1).

We optimized the chromatography and instrument operating parameters to achieve excellent peak shape, separation, and sensitivity. Sensitivity was improved for 4 PFAS, PFOA, PFHxS, PFNA, and PFOS. In this study, we spiked samples at three concentrations in triplicate. For greater accuracy, standards were matrixmatched and extracted and spikes were quantified using the isotope dilution technique. Recovery and precision were compared to the requirements of AOAC SMPR 2023.003. In addition, we determined the Limit of Quantitation (LOQ) as the lowest concentration meeting accuracy and precision, ion ratio, retention time, and signal-to-noise ratio criteria of the qualifier ion. All recovery, precision, and LOQ's met the acceptance criteria of the SMPR. The target analytes, their acronym, chemical abstract number, and experimentally determined LOQ are shown in Table 1.

Figure 1: Nexera[™] and LCMS[™]-8060NX. The ion focus design improves signal intensity with higher gas flows and higher effective temperatures.

Analyte name	Acronym	CAS No.	LOQ (ppb)
Perfluorobutanoic acid	PFBA	375-22-4	0.01
Perfluoropentanoic acid	PFPeA	2706-90-3	0.01
Perfluorohexanoic acid	PFHxA	307-24-4	0.01
Perfluoroheptanoic acid	PFHpA	375-85-9	0.01
Perfluorooctanoic acid	PFOA	335-67-1	0.01
Perfluorononanoic acid	PFNA	375-95-1	0.01
Perfluorodecanoic acid	PFDA	335-76-2	0.01
Perfluoroundecanoic acid	PFUnA	2058-94-8	0.01
Perfluorododecanoic acid	PFDoA	307-55-1	0.01

Table 1: PFAS Analytes, Acronyms, CAS No. and Method LOQ


Perfluorotridecanoic acid	PFTrDA	72629-94-8	0.01
Perfluorotetradecanoic acid	PFTeDA	376-06-7	0.01
Perfluorobutanesulfonic acid	PFBS	375-73-5	0.01
Perfluoropentansulfonic acid	PFPeS	2706-91-4	0.01
Perfluorohexanesulfonic acid	PFHxS	355-46-4	0.01
Perfluoroheptanesulfonic acid	PFHpS	375-92-8	0.01
Perfluorooctanesulfonic acid	PFOS	1763-23-1	0.01
Perfluorononanesulfonic acid	PFNS	68259-12-1	0.01
Perfluorodecanesulfonic acid	PFDS	335-77-3	0.01
Perfluoroundecanesulfonic acid	PFUnDS	749786-16-1	0.01
Perfluorododecanesulfonic acid	PFDoS	79780-39-5	0.01
Perfluorotridecanesulfonic acid	PFTrDS	791563-89-8	0.01
Perfluorooctanesulfonamide	PFOSA	754-91-6	0.01
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid	9CI-PF3ONS	756426-58-1	0.01
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid	11CI-PF3OUdS	763051-92-9	0.01
Hexafluoropropylene oxide dimer acid	HFPO-DA	13252-13-6	0.01
4,8-Dioxa-3H-perfluorononanoic acid	DONA	919005-14-4	0.01
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	4:2 FTS	757124-72-4	0.01
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	6:2 FTS	27619-97-2	0.01
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	8:2 FTS	39108-34-4	0.01
1H,1H, 2H, 2H-Perfluorododecane sulfonic acid	10:2 FTS	120226-60-0	0.01

Sample Preparation and Analysis Conditions

Whole milk (3.7 % fat) was purchased and sampled directly from the carton. Test portions were spiked in triplicate at three different concentrations with 30 native PFAS (Table 1) and 16 isotopically labeled internal standards. Calibration curves for use in the quantitative analysis were prepared using 10- gram test portions spiked with 0.005, 0.01, 0.05, 0.10, 0.50, and 1.0 ng/g of each target analyte. Quantitation was carried out on additional whole milk samples spiked in triplicate at 0.01, 0.10 and 1.0 ng/g. Since standards were extracted in milk matrix and carried through the same procedure, the final concentration of each PFAS in the sample can be calculated directly from the curve.

10-gram portions were weighed, spiked with target analytes and internal standards, and 150 μ L of formic acid and 10 mL of acetonitrile was added. The samples were shaken by hand for 10 seconds and a QuEChERS packet was added. The sample was shaken again for 5 minutes and then centrifuged for 5 minutes at 4000 rpm. An aliquot of the acetonitrile layer was transferred to a tube to which additional QuEChERS reagent was added. The sample was shaken for 10 seconds by hand, for 5 minutes on a shaker, and then centrifuged for 5 minutes at 4000 rpm. An aliquot was removed to another tube and concentrated to less than 1 ml under nitrogen, reconstituted to 1 ml in a methanol-water mixture, transferred to a 1.5 mL tube and centrifuged for 10 minutes at 15,000 rpm. The supernatant was transferred to an LC vial for analysis. A volume suitable to obtain the required sensitivity of the extract was injected onto a UHPLC system (Shimadzu Nexera). Adequate separation of all compounds was achieved in nine minutes. (Figure 2 chromatogram shows the separation of all peaks).

For this study, Shimadzu evaluated 1984 different instrument settings, and 6 different column and gradient combinations, to achieve excellent peak shape and resolution between peaks, as well as to maximize the signal-to-noise ratio of PFOA, PFHxS, PFNA, and PFOS. Mass spectrometry was performed on a Shimadzu LCMS-8060NX with heated electrospray ionization operated in negative mode. Specific compound MRM transitions and associated internal standards are listed in Table 2. Chromatography was adjusted to provide sufficient separation of PFOA from potential cholic acid interferences, and to provide baseline resolution of branched and linear isomers (Figure 3).

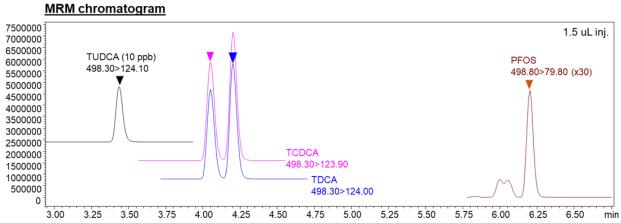


Figure 3: Separation of PFOS from Cholic Acids and baseline resolution between PFOS branched and linear isomers

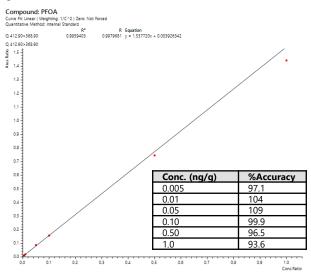
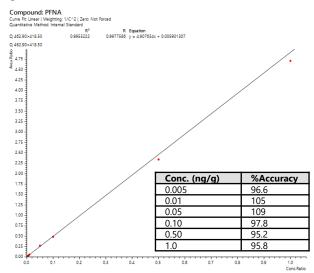

Analyte	Quantitation Ion	Qualifier Ion	Internal Standard
PFBA	212.9 > 168.8		¹³ C ₄ -PFBA
PFPeA	262.9 > 218.8		¹³ C ₅ -PFPeA
PFHxA	313 > 268.8	313 > 118.9	¹³ C ₅ -PFHxA
PFHpA	362.9 > 318.9	362.9 > 168.8	¹³ C ₄ -PFHpA
PFOA	412.9 > 368.9	412.9 > 168.8	¹³ C ₈ -PFOA
PFNA	462.9 > 418.5	462.9 > 218.6	¹³ C ₉ -PFNA
PFDA	512.9 > 468.95	512.9 > 268.55	¹³ C ₆ -PFDA
PFUnA	562.9 > 518.95	562.9 > 269	¹³ C ₇ -PFUnA
PFDoA	612.9 > 268.6	612.9 > 168.6	¹³ C ₇ -PFUnA
PFTrDA	663 > 618.6	663 > 168.5	¹³ C ₇ -PFUnA
PFTeDA	713 > 669	713 > 168.5	¹³ C ₇ -PFUnA
PFBS	298.8 > 79.8	298.8 > 98.9	¹³ C ₃ -PFBS
PFPeS	348.8 > 79.8	348.8 > 98.9	¹³ C ₄ -PFHpA
PFHxS	398.8 > 79.8	398.8 > 98.9	¹³ C ₃ -PFHxS
PFHpS	448.8 > 79.8	448.8 > 99	¹³ C ₆ -PFDA
PFOS	498.8 > 79.8	498.8 > 98.9	¹³ C ₈ -PFOS
PFNS	548.9 > 79.8	548.8 > 99	¹³ C ₇ -PFUnA
PFDS	598.8 > 99	598.8 > 79.8	¹³ C ₇ -PFUnA
PFUnDS	649 > 99	649 > 80	¹³ C ₈ -PFOS
PFDoS	699 > 80	699 > 99	¹³ C ₂ -PFDoA
PFTrDS	749 > 80	749 > 279.6	¹³ C ₇ -PFUnA
PFOSA	498 > 78	498 > 477.95	¹³ C ₈ -PFOSA
9CI-PF3ONS	530.8 > 350.8	532.9 > 352.95	¹³ C ₈ -PFOS
11Cl-PF3OUdS	631 > 451	632.9 > 452.95	¹³ C ₇ -PFUnA
HFPO-DA	284.8 > 168.8	284.8 > 118.9	¹³ C ₃ -HFPO-DA
DONA	376.9 > 250.8	376.9 > 84.9	¹³ C ₄ -PFHpA
4:2 FTS	326.9 > 80.9	326.9 > 306.8	¹³ C ₂ -4:2 FTS
6:2 FTS	426.9 > 80.8	426.9 > 406.9	¹³ C ₂ -6:2FTS
8:2 FTS	526.9 > 506.45	526.9 > 80.55	¹³ C ₃ -PFHxS
10:2 FTS	626.9 > 606.7	626.9 > 80.9	¹³ C ₇ -PFUnA

Table 2: MRM Transitions ar	d Internal Standard Associations
-----------------------------	----------------------------------


Quantitative Analysis

Calibration standards were processed the same as samples. A linear model not forced through zero isotopic dilution calibration in matrix-matched standards provided the best fit and best recoveries of analytes. Residuals of each point in the curve were $\pm 25\%$ of the expected value. Calibration curves for PFOA, PFHxS, PFNA, and PFOS are shown in Figures 3 – 6 respectively. Branched and linear isomers of PFHXS and PFOS were integrated together.

Figure 3: PFOA Calibration Curve

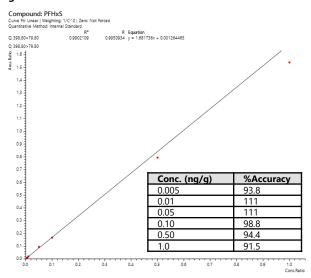
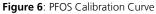


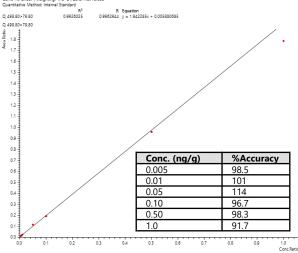
Figure 5: PFNA Calibration Curve

Blank matrixes and three different concentrations ranging from the SMPR required LOQ to 100 times the estimated LOQ were analyzed in triplicate. Recovery and repeatability for each analyte at each concentration are given in Table 3. The LOQ for each analyte was estimated by spiking at concentrations at, or below, the required LOQs listed in SMPR-2023_003. The spiked samples were analyzed in triplicate and the mean and repeatability standard deviation were calculated. Then, the standard deviation was divided by the mean and multiplied by 100% to calculate the repeatability percent relative standard deviation (RSD).

Figure 4: PFHxS Calibration Curve


Exact labeled analogs were used as isotope dilution

standards, except in a few cases where we found that ${}^{13}C_{2}$


suffered matrix interferences. In these cases, another non-

interfering isotope was chosen. The analytes tested and the

associated calibration isotopes are shown in Table 3.

Compound: PFOS Curve Fit: Linear | Weighting: 1/C^2 | Zero: Not Forced

The LOQs for all matrices and compounds were determined using an Excel worksheet that compared each of the requirements of the SMPR including retention time, recovery, repeatability, S/N > 3 for the qualifier ion and an ion ratio of $\pm 30\%$. PFBA, PFPeA, and PFOSA LOQ were set at the minimum concentration, meeting recovery and repeatability requirements and a S/N > 10. The lowest concentration to meet all the requirements of the SMPR was set as the LOQ. Figure 7 shows examples of the LOQ spike for PFHxS, PFNA, PFOA, and PFOS and their corresponding internal standards.

Analyte	Spike conc. (ppb)	Average conc. (ppb)	Standard Deviation	%RSD	Average Recovery%
	Blank	0.000			
PFBA	0.01	0.012	8.20	7.02	116.8
	0.1	0.103	2.10	2.02	103.5
	1	0.973	0.57	0.58	97.3
	Blank	0.000			
PFPeA	0.01	0.011	2.63	2.45	107.1
PFPEA	0.1	0.099	0.66	0.66	99.3
	1	0.947	0.38	0.40	94.7
	Blank	ND			
PFHxA	0.01	0.010	1.74	1.67	104.4
FILIXA	0.1	0.096	0.93	0.97	96.1
	1	0.947	0.10	0.11	94.7
	Blank	0.001			
PFHpA	0.01	0.011	7.89	6.79	116.2
гпра	0.1	0.099	0.45	0.45	99.4
	1	0.968	1.50	1.55	96.8
	Blank	ND			
PFOA	0.01	0.010	11.84	11.35	104.3
FIUA	0.1	0.098	2.89	2.93	98.5
	1	0.977	1.00	1.02	97.7
	Blank	0.000			
PFNA	0.01	0.011	0.96	0.86	112.2
FLINA	0.1	0.100	0.92	0.93	99.5
	1	0.976	0.61	0.62	97.6
	Blank	0.001			
PFDA	0.01	0.011	2.91	2.59	112.7
FFDA	0.1	0.104	0.42	0.40	104.2
	1	0.994	2.71	2.73	99.4
	Blank	0.000			
PFUnA	0.01	0.011	1.20	1.08	111.5
FIONA	0.1	0.101	0.84	0.83	100.9
	1	0.980	0.72	0.74	98.0
	Blank	0.000			
PFDoA	0.01	0.012	13.65	11.65	117.1
FFDOA	0.1	0.101	1.54	1.52	101.3
	1	0.951	1.47	1.55	95.1
	Blank	0.000			
PFTrDA	0.01	0.011	2.40	2.24	106.9
FFIIDA	0.1	0.101	1.60	1.59	100.9
	1	0.994	0.68	0.68	99.4
	Blank	0.000			
PFTeDA	0.01	0.011	4.14	3.80	108.8
IIICDA	0.1	0.098	0.67	0.68	98.2
	1	0.974	3.40	3.49	97.4
	Blank	ND			
PFBS	0.01	0.012	8.49	7.19	118.1
כסוו	0.1	0.102	1.65	1.62	101.6
	1	0.958	0.25	0.26	95.8
	Blank	ND			
PFPeS	0.01	0.010	11.26	11.41	98.7
11163	0.1	0.102	1.05	1.03	101.9
	1	0.953	1.62	1.70	95.3
PFHxS	Blank	0.000			
	0.01	0.010	10.50	10.76	97.6
	0.1	0.099	3.88	3.89	99.6
	1	0.956	1.36	1.42	95.6
	Blank	ND			
DELLING	0.01	0.010	7.26	6.85	106.0
PFHpS	0.1	0.105	2.27	2.17	104.4
	1	0.983	2.10	2.14	98.3

Table 3: Recovery and repeatability for each analyte at each spike concentration

L	Blank	ND			
PFOS	0.01	0.010	6.44	6.54	98.4
	0.1	0.099	2.57	2.59	99.2
	1	0.961	1.32	1.37	96.1
	Blank	ND			
PFNS	0.01	0.010	10.24	10.20	100.4
PFINS	0.1	0.102	2.86	2.81	101.8
	1	0.992	2.58	2.60	99.2
	Blank	ND			
	0.01	0.009	3.74	3.95	94.8
PFDS	0.1	0.103	6.13	5.95	103.0
	1	1.015	1.22	1.20	101.5
	Blank	ND			
PFUnDS	0.01	0.011	2.19	2.01	109.3
PFUNDS	0.1	0.105	4.78	4.56	105.0
	1	0.988	3.49	3.54	98.8
	Blank	ND			
	0.01	0.010	8.88	9.15	97.0
PFDoS	0.1	0.101	2.24	2.22	100.6
F	1	0.963	2.27	2.36	96.3
	Blank	ND			
	0.01	0.010	5.12	4.83	106.0
PFTrDS	0.1	0.099	3.30	3.32	99.4
F	1	0.990	2.08	2.10	99.0
	Blank	ND			
	0.01	0.011	3.59	3.36	106.8
PFOSA	0.1	0.099	1.83	1.85	99.0
	1	0.950	0.55	0.58	95.0
	Blank	0.000			
F	0.01	0.010	4.42	4.31	102.5
9CI-PF3ONS	0.1	0.103	0.96	0.94	102.5
	1	0.971	3.15	3.25	97.1
	Blank	ND			
	0.01	0.009	5.32	5.61	94.8
11CI-PF3OUdS	0.1	0.101	1.10	1.09	100.8
	1	0.992	1.22	1.23	99.2
	Blank	ND			
	0.01	0.010	7.16	7.19	99.6
HFPO-DA	0.1	0.099	2.17	2.18	99.3
	1	0.932	0.80	0.86	93.2
	Blank	0.000		0.00	50.2
F	0.01	0.010	0.80	0.77	103.9
DONA	0.1	0.099	0.42	0.42	98.9
F	1	0.961	2.12	2.21	96.1
	Blank	ND			
F	0.01	0.011	4.97	4.63	107.5
4:2 FTS	0.1	0.102	2.75	2.69	107.5
F	1	0.989	1.28	1.29	98.9
	Blank	0.001	1.20	1.22	
-	0.01	0.012	11.91	10.39	114.6
6:2 FTS	0.1	0.106	5.06	4.80	105.5
F	1	0.984	1.40	1.43	98.4
	Blank	0.001	0.50	1. 10	50.4
	0.01	0.012	8.01	6.86	116.7
8:2 FTS	0.01	0.097	1.53	1.57	97.1
F	1	0.888	0.23	0.26	88.8
	Blank	0.000	0.25	0.20	00.0
F	0.01	0.000	10.94	10.09	108.4
10:2 FTS	0.01	0.095	3.27	3.43	95.4
ŀ	1	0.862	1.22	1.42	86.2

ND = average results less than zero

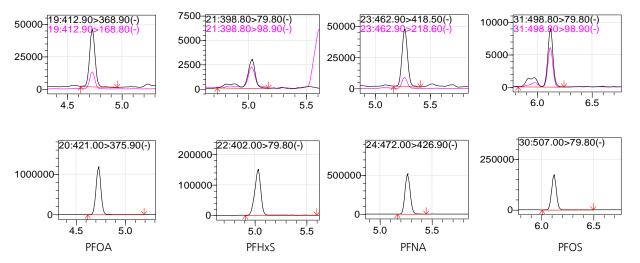


Figure 7: LOQ Peaks with Internal Standards

Conclusion

The Shimadzu LCMS-8060NX Triple Quadrupole Mass Spectrometer coupled with a Shimadzu Nexera Liquid Chromatograph was used in a single laboratory study to measure 30 PFAS compounds in a high fat milk matrix and compared to criteria set by AOAC SMPR 2023.003. Chromatography conditions and the mass spectrometer were optimized to achieve excellent separation of all analytes, baseline resolution between linear and branched isomers, and a two-minute separation between PFOS and potentially interfering cholic acids.

Precision and recovery and the experimentally determined LOQ are well within the requirements of the SMPR.

Reference

1) AOAC SMPR 2023.003

LCMS-8045RX

LCMS-8050RX

LCMS-8060RX

LCMS-2020 LCMS-2050 Q-TOF LCMS-9030/9050

Founded in 1875, Shimadzu Corporation, a leader in the development of advanced technologies, has a distinguished history of innovation built on the foundation of contributing to society through science and technology. Established in 1975, Shimadzu Scientific Instruments (SSI), the American subsidiary of Shimadzu Corporation, provides a comprehensive range of analytical solutions to laboratories throughout North, Central, and parts of South America. SSI maintains a network of ten regional offices strategically located across the United States, with experienced technical specialists, service and sales engineers situated throughout the country, as well as applications laboratories on both coasts.

For information about Shimadzu Scientific Instruments and to contact your local office, please visit our Web site at www.ssi.shimadzu.com

Shimadzu Corporation www.shimadzu.com/an/

SHIMADZU Scientific Instruments Inc. www.ssi.shimadzu.com

For Research Use Only. Not for use in diagnostic procedures.

This publication may contain references to products that are not available in your country. Please contact us to check the availability of these products in your country.

The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu. See http://www.shimadzu.com/about/trademarks/index.html for details.

Third party trademarks and trade names may be used in this publication to refer to either the entities or their products/services, whether or not they are used with trademark symbol "TM" or "@". Shimadzu disclaims any proprietary interest in trademarks and trade names other than its own.

The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice.

02-SSI-LCMS-168 First Edition: September 2024