SHIMADZU

Got DMF? Chromatographic separation and identification of NDMA and DMF using LCMS-9030

Priyanka Chitranshi, Samantha Olendorff, Jennifer C. Davis, Evelyn H. Wang, and Christopher T. Gilles Shimadzu Scientific Instruments, 7102 Riverwood Dr., Columbia, MD 21046 U.S.A.

1. Overview

Chromatographic identification and separation of dimethylformamide (DMF) and N-nitroso-dimethylamine (NDMA) was performed to prevent overestimation of NDMA when DMF interference is present. This method can easily be implemented for the impurity evaluation of active pharmaceutical ingredients (API), intermediates, and final drug products irrespective of triple quadrupole or high-resolution mass spectrometers.

2. Introduction

DMF (Figure 1) is a commonly used solvent in pharmaceutical manufacturing. DMF can be present at low levels in the (API) and/or final drug product. NDMA (Figure 1) along with other nitrosamine impurities is a common impurity found in API and drug products. The Food and Drug Administration (FDA) reported that overestimation of NDMA is possible if NDMA and DMF are coeluting.¹ Modern and intelligent analytical tools such as highresolution mass spectrometers can play a crucial role in accurately identifying the impurity present in the sample.² However, a highresolution instrument may not be readily accessible to every laboratory. Here, advantage of chromatographic separation of NDMA and DMF is emphasized. For proof of concept, the identification was performed on a Shimadzu LCMS-9030 QTOF instrument.

[M+H]⁺: 74.06004 [M+H]⁺: 75.05529

Figure 1 Chemical structure of NDMA and DMF.

3. Method

NDMA and DMF were purchased from Sigma Aldrich (St. Louis, MO). LCMS solvents were grade Honeywell purchased from (Charlotte, NC). LCMS method parameters are shown in Table 1.

LCMS-9030	Parameters	LC-40	Parameters
lon source	APCI	Column	Restek Raptor C18 4.6x100 mm, 2.7 μm
Nebulizing gas	3 L/min	Flow rate	0.6 mL/min
Interface temperature	350 °C	Mobile phase A	0.1% formic acid in water
DL temperature	200 °C	Mobile phase B	0.1% formic acid in methanol
Heat block temperature	200 °C	Injection volume	15 μL
Drying gas	5 L/min	Autosampler temperature	5 °C
Isolation window	±1.4 Da	Column oven	25 °C
Polarity	Positive	Elution	Gradient
Scan type	Extracted ion chromatogram (EIC)	Rinse type	External only
Scan start- end time	2.75-4.75 min	Divert valve	Divert to waste, except when collecting MS data

- methanol:water.
- > The calibration curve was run with a 2-50 ng/mL range and the standards were injected in triplicate (Figure 2 inset).
- \succ LCMS-9030 was custom tuned for NDMA and DMF to achieve a mass accuracy of 7 ppm or better.
- > Use of a divert value is recommended when applying the method to API and/or drug product analysis.

4. Results and Discussion

NDMA and related nitrosamines are reported as contaminants in low amounts in foods, beverages, and other consumer goods. NDMA was recently reported to be present at unacceptable levels in several angiotensin receptor blocker (ARB) drugs by regulatory agencies. The FDA published that NDMA levels may be reported higher than usual if DMF is also present in the sample as a process impurity.

Table 1 Snapshot of LCMS parameters

> Stock solutions of NDMA and DMF standards were prepared in methanol. Further dilutions of stock solutions were prepared in 1:3

Table 2 shows the isotopic distribution pattern for DMF. The naturally abundant isotope (m/z 74.0600) of DMF can be easily distinguished from the naturally abundant isotope of NDMA (m/z 75.05529) by a triple quadrupole instrument. However, there are two other suggested interferences (Table 2): (1) m/z 75.0571 (0.37% contribution) due to substitution of ¹⁴N with ¹⁵N and (2) m/z 75.0634 (3.24% contribution) due to substitution of ¹²C with ¹³C. While the percent contribution of second suggested interference is higher, it is easier to distinguish on a highresolution instrument with a mass accuracy of 20 ppm or better. Despite only 0.37% contribution, the interference observed with ¹⁵N isotope cannot be distinguished unless a mass accuracy of 15 ppm or better is used. Bearing in mind the above information, it is imperative that chromatographic separation of DMF and NDMA will allow the user to be able to use either a triple quadrupole or QTOF instrument for the analysis of DMF and NDMA.

 Table 2
 Isotopic distribution pattern of DMF and suggested interfering
 isotopes

10010000			
m/z	% isotopic distribution	Chemical formula	
74.0600	100%	C ₃ H ₈ NO	[M+H] abund mass u
75.0571	0.37%	C ₃ H ₈ ¹⁵ NO	Replac Sugges NDMA differe
75.0634	3.24%	C ₂ ¹³ CH ₈ NO	Replac 13C. S NDMA with N

Figure 2 NDMA and DMF (20 ng/mL) were chromatographically separated. Shown here is LCMS-9030 operated at 7 ppm mass accuracy window. (Inset) NDMA calibration curve in 2-50 ng/mL range.

FP134.5

Comment

naturally occurring most lant isotope. More than 1 unit apart from NDMA

cement of ¹⁴N with ¹⁵N interference with (23.6 ppm mass ence with NDMA)

cement of one 12C with Suggested interference with (115 ppm mass difference IDMA)

Figure 3. EIC for (a) NDMA, (b) DMF C_3H_8NO , (c) $C_3H_8^{15}NO$ (50 ng/mL), for $C_2^{13}CH_8NO$ isotope for DMF. At 10 and (d) C₂¹³CH₈NO in 10 ng/mL neat solution at 10 ppm mass accuracy.

Figure 3 shows the EIC chromatograms (a) from a 10 ng/mL neat solution containing NDMA and DMF. The mass accuracy range was deliberately increased to 10 ppm to investigate if mass tolerance can play a role in the potential interference of DMF with NDMA quantitation. Figure 3a and 3b show strong signal strength for the naturally abundant isotope of NDMA and DMF, respectively. We were specifically interested in the presence of ¹⁵N and ¹³C substituted DMF isotopic impurities when DMF is present in the sample. Figure 3c clearly demonstrates significant no interference can be observed from the $C_3H_8^{15}NO$ isotope of DMF at 10 ppm mass accuracy even at 50 ng/mL concentration. Figure 3d shows the EIC ppm mass accuracy we observed ~5.6% contribution (based on area count) from ¹³C isotope.

5. Conclusions

- > NDMA and DMF were baseline separated with the new chromatographic method.
- \succ No interference was observed from the ¹⁵N isotope of DMF even at 50 ng/mL concentration of DMF (10 ppm mass accuracy).
- \succ The area ratio of ¹³C to naturally abundant isotope of DMF was at ~5.5%. Since, the mass difference between 13 C isotope of DMF and NDMA is >100 ppm a QTOF instrument will be able to easily distinguish the NDMA and DMF at better than 15 ppm mass accuracy.
- > Excellent mass accuracy, linearity, and percent accuracy was observed with the reported LCMS method.
- > This method can be transferred to triple quadrupole MS instruments where DMF is suspected to be a potential interference for the quantitation of NDMA in pharmaceutical formulations.

References

- 1. Yang, J., Marzan, T.A., Ye, W. et al. AAPS J 22, 89 (2020).
- 2. FY20-106-DPA-S_LC-ESI-HRMS Method for the Determination of Nitrosamine Impurities in Metformin Drug Substance and Drug Product. US Food and Drug Administration Published 06/03/2020.
- 3. Wu Q, Kvitko E, Zenzola N, Kucera K, Light D. ChemRxiv. Cambridge: Cambridge Open Engage; 2020;

Disclaimer: The products and applications in this presentation are intended for Research Use Only (RUO). Not for use in diagnostic procedures.

quantitative