California and Oregon's Complete Residual Pesticide Analysis using a Shimadzu LCMS-8060

Jennifer Davis ${ }^{1}$, Jeffrey H. Dahl ${ }^{1}$, Christopher Gilles ${ }^{1}$, Bob Clifford ${ }^{1}$
1 Shimadzu Scientific Instruments, Columbia, MD

1. Introduction

. esting on cannabis products. Currently each state is setting individua regulatory guidelines. This results in variation between the number of analytes tested and their required action levels; currently California regulates a total of 66 pesticides and Oregon regulates a total of 59 pesticides. To analyze these complete lists, laboratories commonly use both LCMS and GCMS because some compounds do not ionize well by ESI-LCMS. This study evaluates using both ESI and APCI ionization techniques to quantitate the complete California list using only LCMS. The
resulting APCI-LCMS and ESI-LCMS MRM methods was tested in cannabis flower extract on a Shimadzu LCMS-8060. The LOQ determined for each pesticide was below the regulatory action level (Table 1).

2. Methods

A Shimadzu LCMS-8060 triple quadrupole mass spectrometer coupled with a Shimadzu Nexera X2 UHPLC system was employed for this evaluation. A total of 10 pesticides were analyzed by atmospheric (APCI-LCMS). All other pesticides were analyzed by electro spray ionization liquid chromatography mass spectrometry (ESI-LCMS). Final method conditions can be seen in Figure 1 and 2. For each pesticide one to five MRM transitions were acquired. Separation was accomplished and retention times determined on column using neat standards prior to in-matrix evaluation. Matrix matched calibration curves were prepared by serial dilution of spiked flower extract with blank flower extract and evaluated for each pesticide The calibration set included multiple different concentrations, ranging from $1.0 \mathrm{ng} / \mathrm{g}$ to $2000 \mathrm{ng} / \mathrm{g}$.

Figure 2 LCMS-8060 ESI Method Conditions

3. Results

Using the same sample, the entire Calitornia and Oregon residual pesticide list was analyzed. The APCI-LCMS method demonstrated accurate and precise trace-level quantitation in cannabis flower for 10 pesticides that are traditionally analyzed by GCMS and the ESI-LCMS method demonstrated the same robus successfully used for chromatographic separation and identification of all 9 pesticides (Figure 3 and 4). The LOQ for each pesticide was below the California and Oregon action levels in cannabis, and precision and accuracy esults were excellent. LOQs were determined for each pesticide using their corresponding retention time and a S / N calculation above $10: 1$,

Figure 4 Representative Chromatogram for $\stackrel{5.5}{7.5} \stackrel{5}{7}$ pesticides using ESI-LCMS

3-1. Quantitative Analysis in Cannabis Matrix

 Matrix-matched calliration curves were prepared by serial dilution of spiked Nower extract with blank flower extract and evaluated for each pesticide. All calibration curves demonstrated linearity with a range from $1 \mathrm{ng} / \mathrm{g}$ to $2000 \mathrm{ng} / \mathrm{g}$ on flower concentrations. A $1 / \mathrm{C}$ weighting factor was used for statistical calculations and resulted in R2 >0.99 for all pesticides. Representative chromatograms andcalibration curves can be found in Figure 5 and 6 . Chromatographic separation of nalytes from matrix interferences resulted in low signal suppression and vielded good signal intensity.

Figure 6 Calibration Curves and MS Chromatograms at $75 \mathrm{ng} / \mathrm{g}$ for ESI

4. Conclusions

A complete LCMS solution was developed for residual pesticide testing in cannabis matrix utilizing both APCI and ESI ionization techniques coupled with a single Shimadzu LCMS-8060. The APCI-LCMS method was developed and tested in cannabis flower matrix for the analysis of o Calfiomia and Oregon regulated optimized and tested in cannabis flower matrix for the analysis of 84 total pesticides. The LOQs determined in this method were well below the action limits required by California and Oregon, demonstrating the viability of an LCMS total solution for cannabis testing in these two programs. The use of the ultrafast polarity switching capability of the LCMS-8060 allowed for accurate and sensitive quantitation of all 94 pesticides currently being regulated by California or Oregon.

