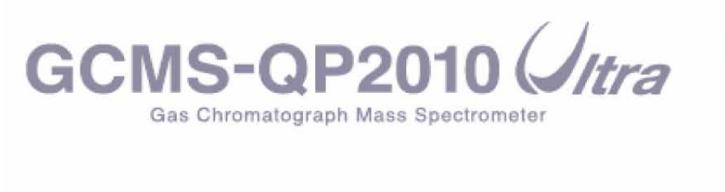


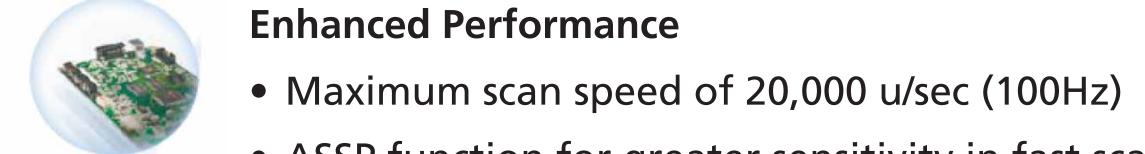
Improvement of ASTM D-5769 by GCMS High Concentration Tuning and Automated Data Processing

Zhuangzhi 'Max' Wang, Ph.D. GC/GCMS Senior Product Specialist, Richard Whitney, Ph.D. GC/GCMS Senior Products, Nicole Lock, GC/GCMS Product Specialist, Laura Chambers, GCMS Product Manager, Shimadzu Scientific Instruments, Columbia, MD, USA

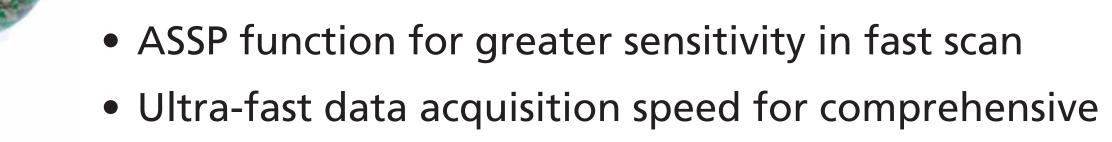
Introduction

Method ASTM D-5769 is a standard GCMS method to determine aromatics in finished motor gasoline or ethanol blends. However, the intrinsic high sensitivity of mass spectrometry usually gives rise to a limited linear range that makes it difficult to meet method requirements. GCMS-QP2010 Ultra, a new single transmission quadruple GCMS, allows for tuning the instrument in a "high concentration" mode that is suitable for ASTM D-5769 type of analysis without making any hardware compromises. In addition, newly improved Shimadzu aromatics report software is now capable of conducting automated data acquisition, processing and reporting. These new features have greatly enhanced method robustness and efficiency, providing a total solution of running ASTM D-5769.


ASTM D5769 Compounds of Interest


0.1 - 4 %Benzene: Toluene: 1 – 13 % C6-C12 Aromatics: 10 – 42 %

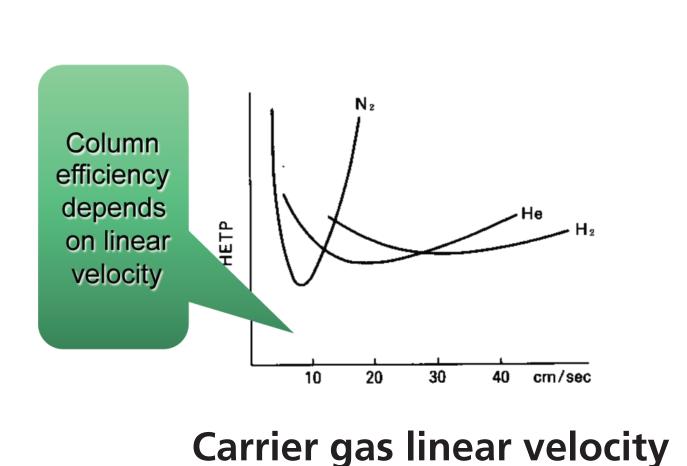
Method Challenges

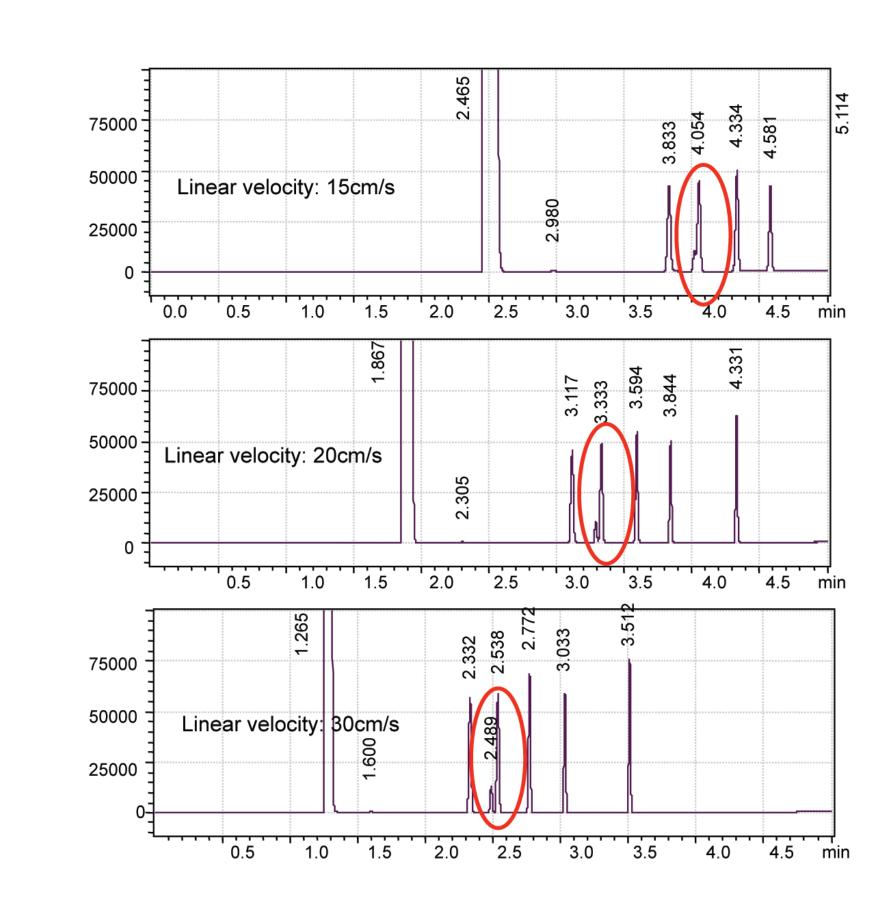

- Good linearity is difficult to obtain
- MS detector saturates easily at high concentrations due to limited fragmentation Quadratic calibration is implemented for these high concentration compounds
- Automation is hard to realize
- Data acquisition
- Processing
- Reporting

GCMS-QP2010 Ultra New Features

2 dimensional gas chromatography Increased sensitivity

Increased Productivity

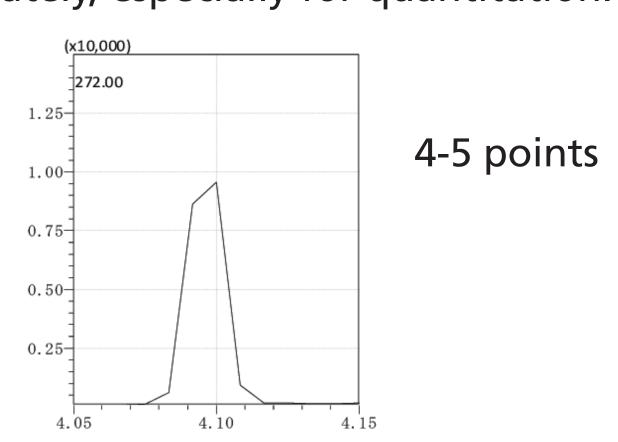

- Analysis cycle shortened significantly
- Maintenance downtime reduced

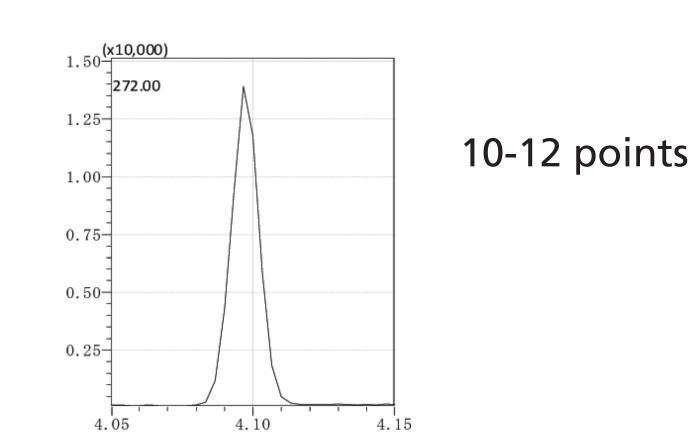

Eco-friendly

- 36% reduction of power consumption in analysis standby mode
- 30% reduction of CO₂ factory emission

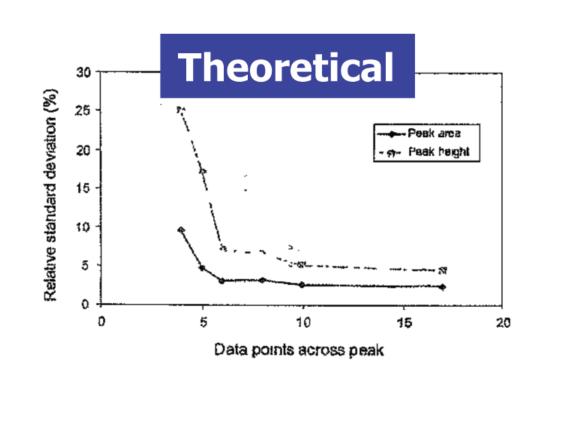
Constant Linear Velocity

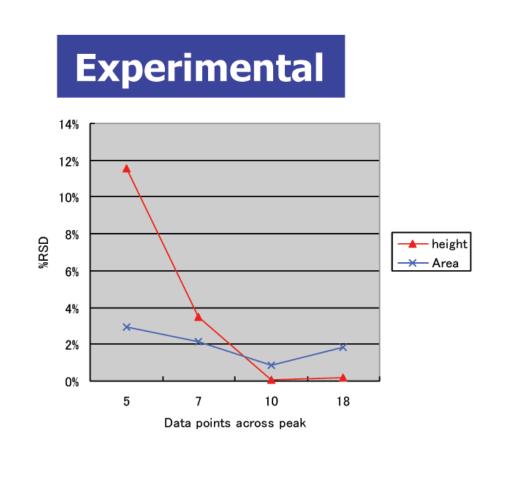
Optimum separation in one mouse click Transfer methods between GC's easily even if the column id's are different with constant linear velocity

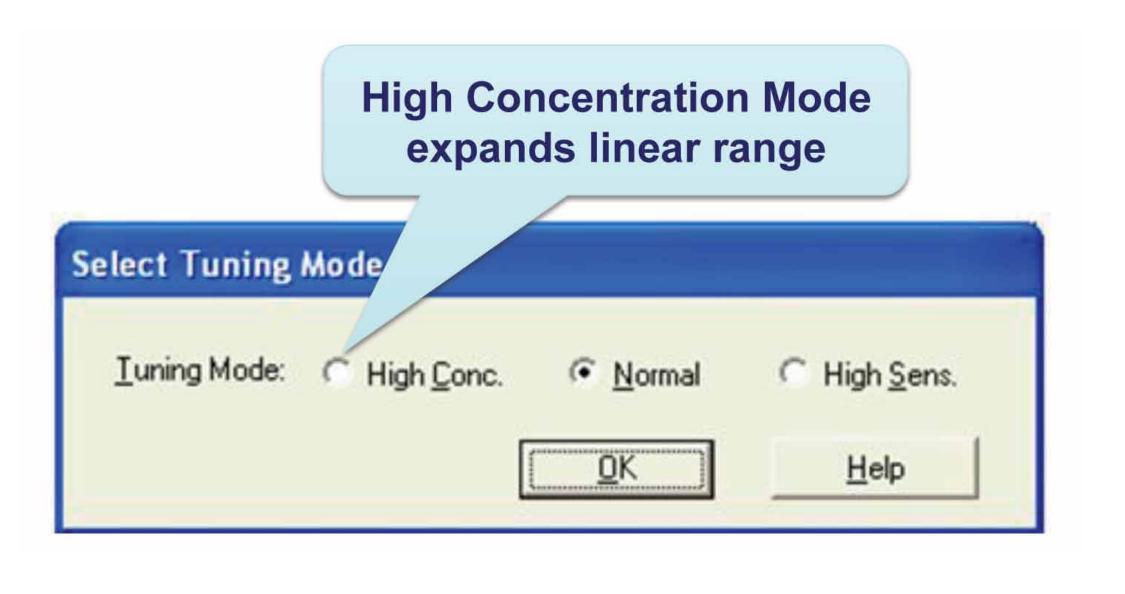




Very Fast Scan / Data Acquisition

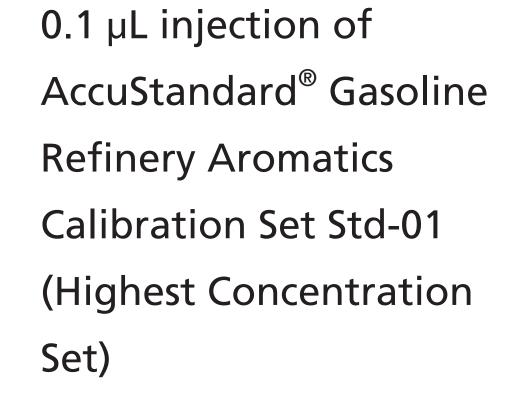

Why is fast cycle time necessary?

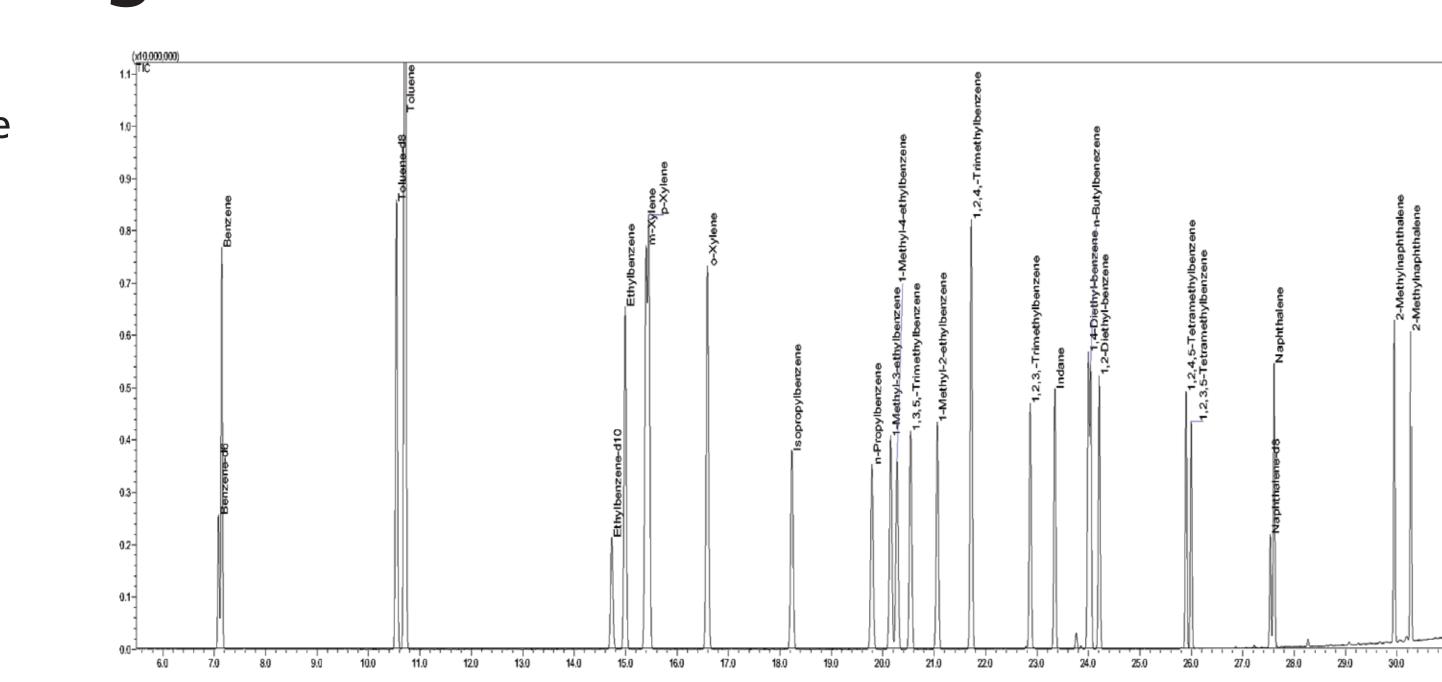

Sufficient data sampling points per peak is important to acquire chromatographic data accurately, especially for quantitation.



Flexible Tuning Modes

Three tuning modes to select from




Experimental – GCMS-QP2010 Ultra with AOC20i/s Autosampler

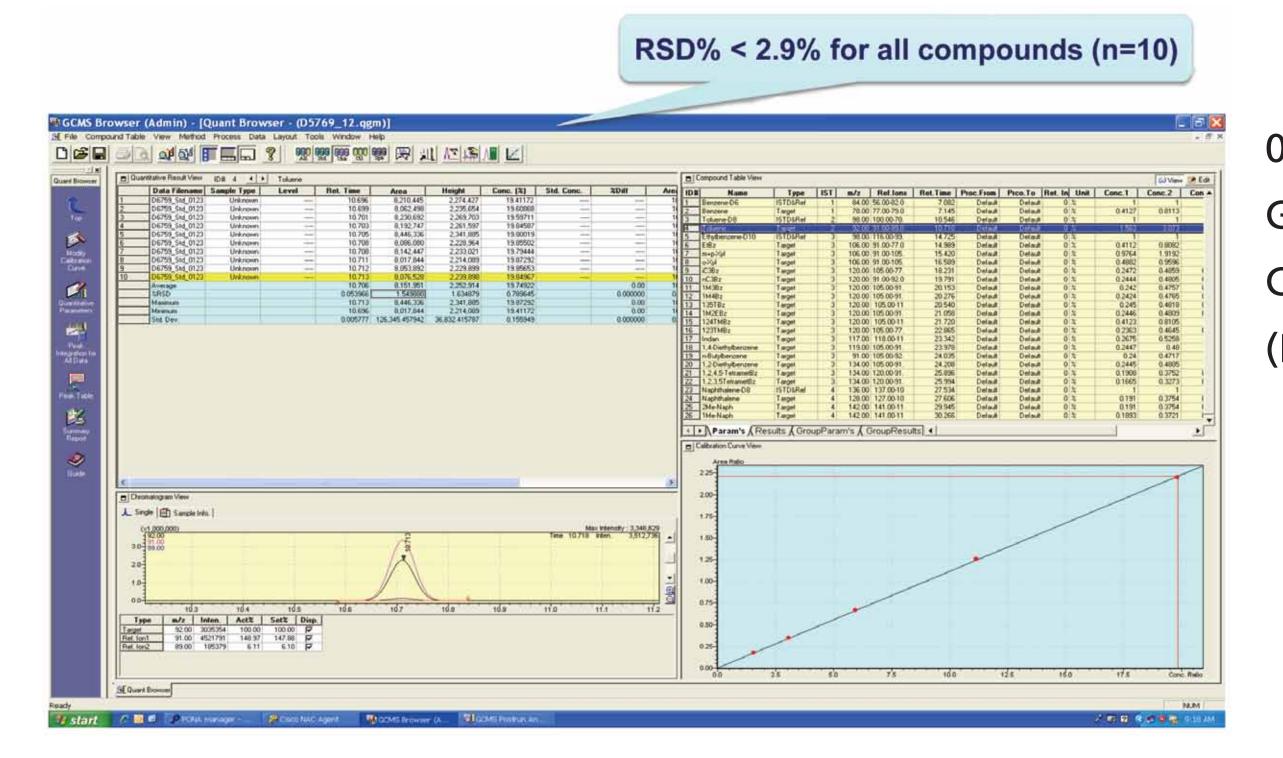
- INJ: 250.00°C
- Linear velocity mode: 35.0 cm/sec
- Gas saver: On (split ratio 250) to 5 after 1min) – Column: ZB-1 60 m x 0.25 mm x 1 μm
- Column: 60.0°C, 3.0°C/min to 120.0°C, 10.0°C/min to 250.0°C
- Injection Volume: 0.1 μL

- Ion Source Temp: 200.00°C Interface Temp: 280.00°C
- Detector Voltage: -0.1KV relative to tune (0.98kV)
- Scan range: 45.00 300.00 Scan interval: 0.10sec
- Scan rate: 10 spectra/sec
- Software
- GCMSsolution Ver. 2.71
- Shimadzu Aromatics Report Software Ver. 2.0

TIC Chromatogram

Calibration Curve

Compound Table


Name	Туре	ISTD Group	m/z	Ref.lons	RT	Conc.1	Conc.2	Conc.3	Conc.4	Conc.5
Benzene-D6	ISTD&Ref	1	84	56.00-82.00\	7.08	1.0	1.0	1.0	1.0	
Benzene	Target	1	78	77.00-79.00\	7.15	0.4	0.8	1.6	2.9	
Toluene-D8	ISTD&Ref	2		100.00-70.00	10.55	1.0	1.0	1.0	1.0	
Toluene	Target	2	92	91.00-89.00\	10.71	1.6	3.1	5.9	11.1	1
Ethylbenzene-D10	ISTD&Ref	3	98	116.00-99.00	14.73	1.0	1.0	1.0	1.0	
EtBz	Target	3	106	91.00-77.00\	14.99	0.4	0.8	1.6	2.9	
m+p-Xyl	Target	3	106	91.00-105.00	15.42	1.0	1.9	3.7	7.0	1
o-Xyl	Target	3	106	91.00-105.00	16.59	0.5	1.0	1.9	3.5	
iC3Bz	Target	3	120	105.00-77.00	18.23	0.2	0.5	0.9	1.8	
nC3Bz	Target	3	120	91.00-92.00\	19.79	0.2	0.5	0.9	1.7	
1M3Bz	Target	3	120	105.00-91.00	20.15	0.2	0.5	0.9	1.7	
1M4Bz	Target	3		105.00-91.00	20.28	0.2	0.5	0.9	1.7	
135TBz	Target	3	120	105.00-119.0	20.54	0.2	0.5	0.9	1.7	
1M2EBz	Target	3	120	105.00-91.00	21.06	0.2	0.5	0.9	1.7	
124TMBz	Target	3	120	105.00-119.0	21.72	0.4	0.8	1.6	2.9	
123TMBz	Target	3	120	105.00-77.00	22.87	0.2	0.5	0.9	1.7	
Indan	Target	3	117	118.00-115.0	23.34	0.3	0.5	1.0	1.9	
1,4-Diethylbenzene	Target	3		105.00-91.00	23.98	0.2	0.5	0.9	1.7	
n-Butylbenzene	Target	3	91	105.00-92.00	24.04	0.2	0.5	0.9	1.7	
1,2-Diethylbenzene	Target	3	134	105.00-91.00	24.21	0.2	0.5	0.9	1.7	
1,2,4,5-TetrametBz	Target	3		120.00-91.00	25.90	0.2	0.4	0.7	1.4	
1,2,3,5TetrametBz	Target	3	134	120.00-91.00	25.99	0.2	0.3	0.6	1.2	
Naphthalene-D8	ISTD&Ref	4	136	137.00-108.0	27.53	1.0	1.0	1.0	1.0	
Naphthalene	Target	4	128	127.00-102.0	27.61	0.2	0.4	0.7	1.4	
2Me-Naph	Target	4	142	141.00-115.0	29.95	0.2	0.4	0.7	1.4	
1Me-Naph	Target	4	142	141.00-115.0	30.27	0.2	0.4	0.7	1.3	

Aromatics Report

Reports are generated automatically when running GCMSsolution batch processing

e Name:	D6759_Std_01202012_12	Rev1.aad		Aromatic	Wt%	Vol%
ech ID:	Max Wang			Benzene	2.95321	2.93
ethod:	D5769_12.qgm			Toluene	11.28373	11.38
ate/Time:	2/13/2012,	10:44:22 AM,		API Gravity	63	
equence Number:	123456	10.44.22 /-1111		Calculated Density	0.727506427	
Pl Gravity:	63			Total Aromatics	62.11258	61.46
al Number:	2			Total / II office	02111200	• • • • • • • • • • • • • • • • • • • •
	_					
	Internal Standa					
Group	Compound	Concentration	Ret. Time	m/z		
1	Benzene-D6	1	7.1	84		
3	Ethylbenzene-D10	1	14.7	98		
4	Naphthalene-D8	1	27.5	136		
IS Group	Components	Ret. Time	m/z	Density	Wt%	Vol%
13 Group	Benzene	7.135	78	0.8845	2.95321	2.9382
2	Toluene	10.693	92	0.8719	11.28373	11.388
	Tolderic	10.000	- 02	0.0110	11.20010	11.000
IS Group	Components	Ret. Time	m/z	Density	Wt%	Vol%
3	Ethylbenzene-D10	14.713	98		i	
3	EtBz	14.973	106	0.8718	2.94993	2.9777
3	m+p-Xyl	15.417	106	0.8677	6.97092	7.0697
3	o-Xyl	16.571	106	0.8846	3.47221	3.4542
C8 Aroms				Totals	13.39306	13.50
3	iC3Bz	18.214	120	0.8664	1.78037	1.8083
3	nC3Bz	19.771	120	0.8665	1.76024	1.7877
3	1M3Bz	20.133	120	0.8691	1.75597	1.7780
3	1M4Bz	20.258	120	0.8657	1.75505	1.7840
3	135TBz	20.523	120	0.8696	1.7737	1.7949
3	1M2EBz	21.045	120	0.8851	1.75918	1.7490
3	124TMBz	21.703	120	0.8803	2.9801	2.9791
3	123TMBz	22.852	120	0.8987	1.71298	1.6773
3	Indan	23.332	117	0.9689	1.91871	1.7427
C9 Aroms				Totals	17.19630	17.10
3	1,4-Diethylbenzene	23.981	119	0.8664	1.76026	1.7879
3	n-Butylbenzene	24.024	91	0.8646	1.73	1.7608
3	1,2-Diethylbenzene	24.196	134	0.8843	1.76118	1.7526
3	1,2,3,5TetrametBz	25.986	134	0.8946	1.20145	1.1818
3	1,2,4,5-TetrametBz	25.886	134	0.8915	1.37826	1.3605
4	Naphthalene-D8	27.524	136	4 0000	4 00004	4.4000
4	Naphthalene	27.596	128	1.0000	1.36201	1.1986
4 4	2Me-Naph	29.935 30.256	142 142	1.0000 1.0245	1.369 1.36067	1.2047
	1Me-Naph	30.236				1.1688
Uncalibrated Totals	Alkylindans C4Benzenes		117 134	1.0000 0.8780	3.20766 3.28319	2.8227 3.2907
TOTALS	C4Benzenes C5Benzenes		148	1.0000	0.23461	0.2065
	C6Benzenes	+	162	1.0000	0.23401	0.2003
C10 Aroms	CODONZONOS		102	Totals	14.32200	13.95
	1			Totals	2.96428	2.57
C11 Aroms				Totals	0.00000	0.00
C11 Aroms						
C11 Aroms				Total Aromatics:	Wt% 62.11258	Vol% 61.46

Repeatability

0.1 μL injection of AccuStandard® Gasoline Refinery Aromatics Calibration Set Std-01 (Highest Concentration Set)

Conclusions

- High concentration tuning mode expands calibration linearity. Good linearity has been achieved across all concentrations of all compounds; no saturated integration was observed, therefore, no quadratic fit was needed.
- Implementation of Shimadzu Aromatics report software has enabled automation of data acquisition, processing, and reporting.
- Linear velocity mode simplifies parameter settings and provides optimized separation.
- Fast scan rate (10 spectra/sec vs. 3 spectra/sec) improves both accuracy and precision.

Acknowledgements

- Mr. Mohamed Salem and Mr. Patrick Armstrong (Shimadzu R&D group) developed Aromatics Report software.
- Mrs. Karen Colclazier (CITGO group) gave valuable application feedback.
 Phenomenex provided a ZB-1 capillary column.