BHIMADZU

Combining Methods CAN/CGSB-3.0 and ASTM D-5580 in a Single GC platform

Zhuangzhi 'Max' Wang, Ph.D. GC/GCMS Senior Product Specialist, Richard Whitney, Ph.D. GC/GCMS Senior Product Specialist, Clifford M. Taylor, Marketing Manager, Gas Chromatography Products, Nicole Lock, GC/GCMS Product Specialist, Laura Chambers, GCMS Product Manager, Shimadzu Scientific Instruments, Columbia, MD, USA

Introduction

To improve productivity and lower the capital cost, a single gas chromatograph has been configured to perform two standard methods: CAN/CGSB-3.0 and ASTM D-5580.

Detailed hydrocarbon (DHA) analysis of automotive gasoline has become a routine gas chromatographic method. The Canadian standard CAN/CGSB-3.0 requires cryogenic temperature programing to provide better separation of early-eluting components than conventional non-cryogenic DHA measurements. Determination of aromatics in the presence of methanol and ethanol is also an important requirement for bio-ethanol; method ASTM D-5580 is the standard method for this analysis.

In this work, the two applications have been successfully integrated into one GC. The methods of three tests – one for CAN/CGSB-3.0 and two for ASTM D-5580, can be switched smoothly with minimum effort. Automated software control provides separation of hydrocarbons in groups and reporting of the results for method CAN/CGSB-3.0. Repeatability (%RSD) of ASTM D-5580 was less than 1.2% for analysis No. 1, and less than 1.8% for analysis No. 2.

This configuration is not limited to motor gasoline analysis though; it can be applied to other finished products such as blend alcohol and other new green energy products.

Valve box Temp: 80 °C

GCSolution ver. 2.41

• PONASolution ver. 2.60

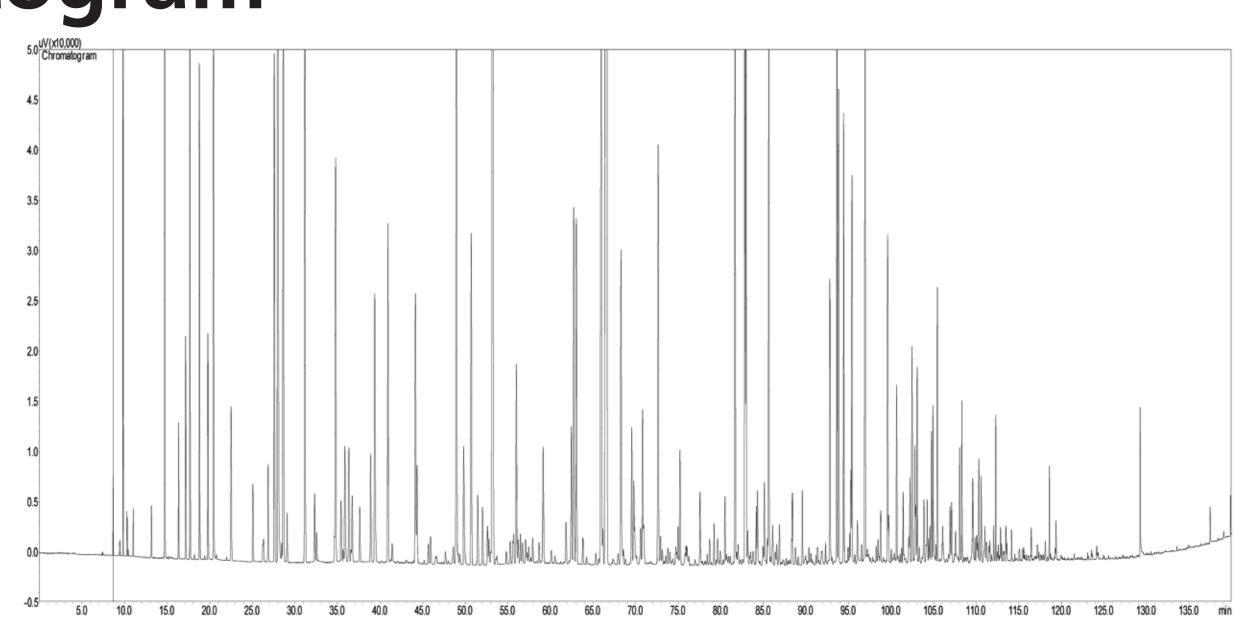
• APC1 Pressure: 210.0KPa

Instrumentation

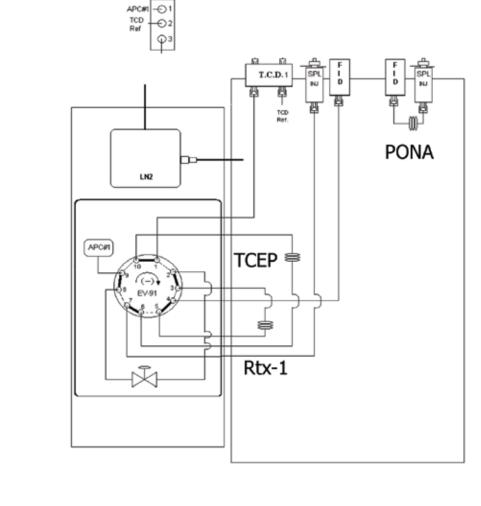
GC-2010Plus

- Columns: – 20% TCEP, 0.558m X 0.75mm
- Rtx-1 30m X 0.53mm X 5µm
- LN₂ Cryo-cooling
- Injection Volume: 1 µL

Canadian PONA Method CAN/CGSB-3.0

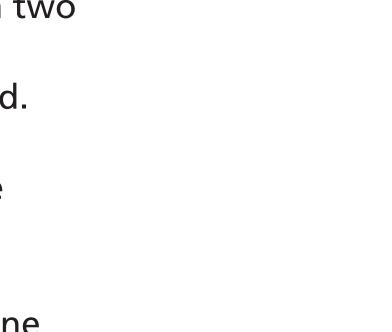

Objective

- Separation of hydrocarbons into types
- <u>Paraffins</u>, <u>Olefins</u>, <u>Naphthene</u>, <u>Aromatics</u>
- Separation of each type according to carbon number
- Method Single capillary column separation of all components, followed by grouping with a post-run program - PONA Solution


Canadian PONA Experimental

- Column: Rtx-1 PONA 100mX0.25mmX0.5µm
- Sample: Premium Gas
- Carrier Gas: He, Linear velocity: 25.6cm/sec
- Split ratio: 270, Gas Saver: On (split ratio 270 to 5 after 5min)
- Injector temperature: SPL 275°C
- Oven Temperature: 0°C hold 15min, 1°C/min to 50°C, 2°C/min to 130°C, 4°C/min to 270°C
- Detector: FID 300 °C
- Injection volume: 0.5 µL

Chromatogram





Manual Chromatogram Quantification

All components are identified and classified

Canadian PONA Report

Sample name	Premium Gas			Peak Name	Hydrocarbon Type	Retention Time	% by Mass	% by Mole	% by Volume
Sample ID	Premium Gas			Isobutane	Р	8.66	0.09	0.091	0.121
Operater	Admin			1-Butene	х	9.44	0.019	0.018	0.023
ID table	CanadianPONA			Isobutene	0	9.48	0.013	0.013	0.016
Comments	Premium Gas			n-Butane	А	9.83	0.88	0.889	1.132
Sampling date	2/21/2012			trans-2-Butene	х	10.3	0.054	0.053	0.064
Analysis date	4/6/2011			cis-2-Butene	0	11.02	0.062	0.06	0.072
Identified peaks	[323/367]			3-Methyl-1-butene	0	13.15	0.087	0.085	0.1
Total area	19776176			Isopentane	0	14.71	5.616	5.636	6.72
				1-Pentene	Р	16.34	0.262	0.256	0.295
Hydrocarbon Type	% by Mass	% by Mole	% by Volume	2-Methyl-1-butene	0	17.17	0.451	0.44	0.5
Paraffins	3.81	3.80	4.46	n-Pentane	Р	17.68	1.337	1.342	1.585
Isoparaffins	39.31	39.49	42.53	trans-2-Pentene	Р	18.78	1.042	1.017	1.161
Olefins	11.37	11.66	12.14	cis-2-Pentene	0	19.79	0.495	0.483	0.544
Naphthenes	4.97	5.09	4.79	2-Methyl-2-butene	N	20.44	1.267	1.236	1.379
Aromatics	29.53	31.95	25.11	"2,2-Dimethylbutane"	0	22.51	0.406	0.405	0.461
Oxygenates	11.02	8.01	10.99	Cyclopentene	0	25.07	0.205	0.195	0.186
				4-Methyl-1-pentene	0	26.24	0.038	0.038	0.042
Density(15deg)	0.75	g/cm3		3-Methyl-1-pentene	0	26.32	0.069	0.067	0.074
Average molecular	~~~~			Cyclopentane	Р	26.85	0.254	0.248	0.247
weight	99.34			"2,3-Dimethylbutane"	0	27.58	1.397	1.395	1.561
Reseach Octane Number	. 89.79			Methyl-tert-butylether	0	27.98	7.979	10.963	10.937
Vapor pressure (37.78deg)	41.56	kPa		"2,3-Dimethyl-1-butene"	P	28.45	0.031	0.03	0.033
(J.) Oueg	41.50	N G		2-Methylpentane	P	28.63	2.516	2.513	2.846
				trans-4-Methyl-2-pentene		29.08	0.133	0.13	0.144
				3-Methylpentane	x	31.17	1.546	1.543	1.719
				2-Methyl-1-pentene	A	32.33	0.194	0.19	0.206
				1-Hexene	x	32.55	0.087	0.085	0.094

ASTM D5580-02

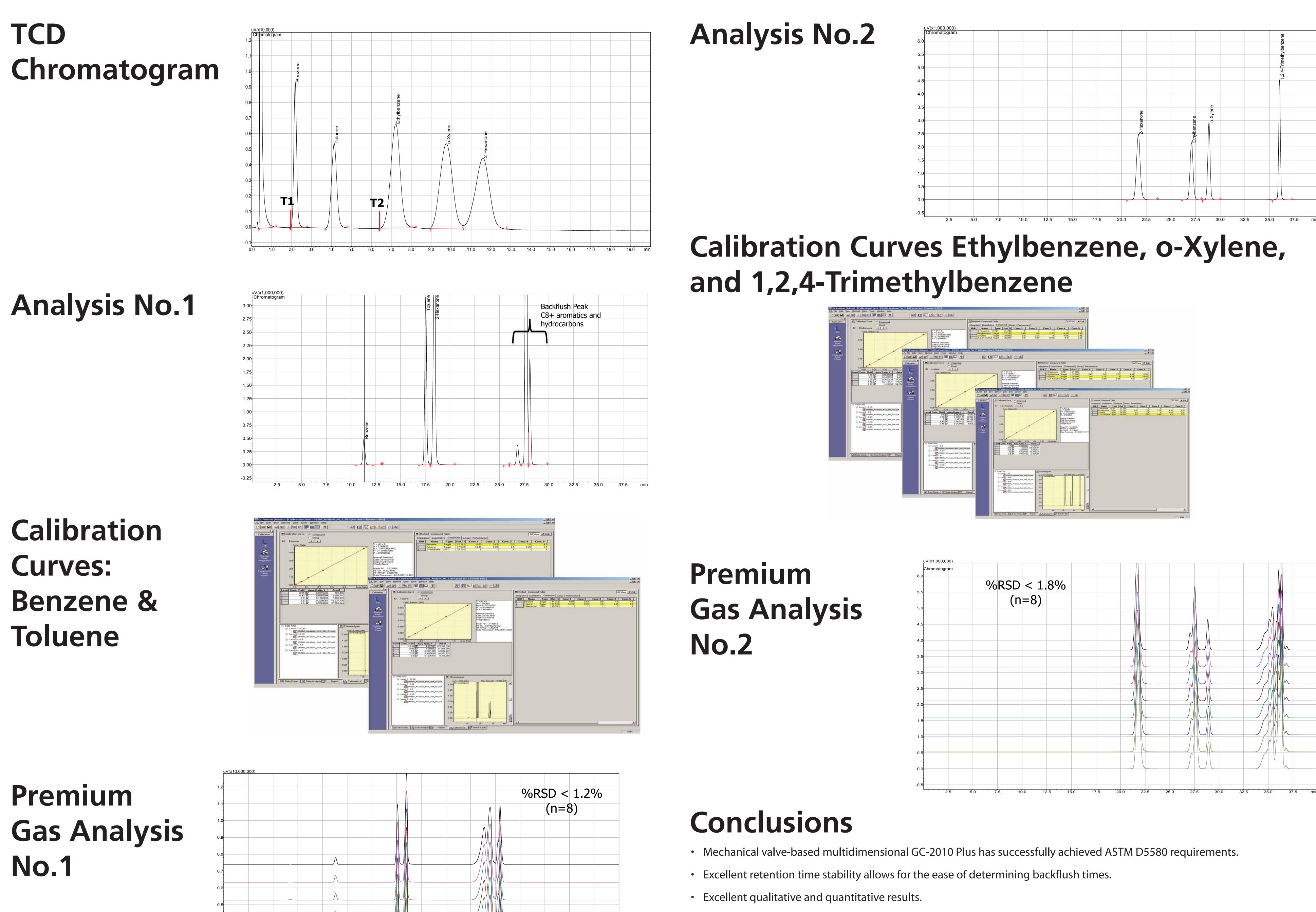
Scope:

Determination of benzene, toluene, ethylbenzene, xylenes, C9 and heavier aromatics, and total aromatics

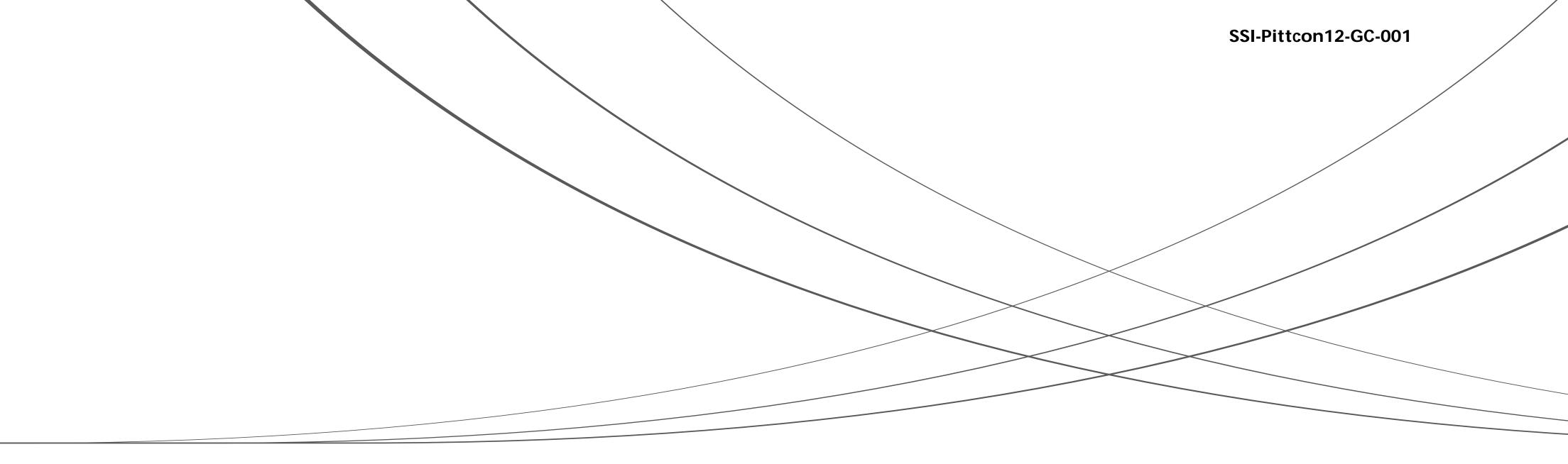
Sample: Finished motor gasoline

Two Step Analysis

No.1


Determination of benzene and toluene, with 2-Hexanone as internal standard; backflush C8+ aromatics and hydrocarbons

No.2


Determination of ethylbenzene, xylenes, and C9+ aromatics, with 2-Hexanone as internal standard

ASTM D-5580 Experimental

- INJ Temp: 200 °C, Carrier Gas: He, Flow Control Mode: Pressure, INJ Pressure: 160KPa, TCEP Column Flow: 10 mL/min, Rtx-1 column flow: 10 mL/min, Split vent flow: 100 mL/min, Purge Flow: 1mL/min, Split Ratio: 11:1
- Valve Box Temp: 80.0 °C
- Oven1 Temp: 40.0 °C hold 6 min, 2 °C /min to 80 °C, 3 °C/min to 115 °C hold 2.33 min
- FID Temp: 250 °C, Makeup Gas: He, Makeup Flow: 20.0mL/min, H2 Flow: 40.0mL/min, Air Flow: 400.0mL/min.
- TCD Temp: 200 °C, Makeup Gas: He, Makeup Flow: 8 mL/min, Current: 60 mA
- T1: 1.8 min, T2: 6.2 min, T3: 21.0 min, T4: 30.0 min

0.1 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 min

• In addition to ASTM D-5580 method, a separate analytical line has been incorporated to be able to run Canadian PONA analysis on the same GC, which has lowered instrumentation cost and improved productivity.

Acknowledgements

• Mr. Mohamed Salem and Mr. Patrick Armstrong (Shimadzu R&D group) developed Canadian PONA software. • Mr. Inoye Tataaki and Mr. Ryosuke Kamae (Shimadzu Japan) developed and supported PONASolution software.