

Simple, Sensitive and Rapid Quantification of Teriparatide in Human Plasma by LCMS-8060

Avinash Gaikwad¹, Chaitanya Krishna¹, Yogesh Arote¹, Pratap Rasam², Jitendra Kelkar²

¹ ADC - Shimadzu Analytical (India) Pvt. Ltd., Nerul, Navi Mumbai-400706, Maharashtra, India. ² Shimadzu Analytical (India) Pvt. Ltd., 1 A/B Rushabh Chambers, Makwana Road, Marol, Andheri (E), Mumbai-400059, Maharashtra, India.

1. Overview

In this study, we developed a simple, sensitive and rapid LC-MS/MS method for the analysis of teriparatide in human plasma. Teriparatide was extracted from plasma using SPE method and samples were analyzed on LCMS 8060 system.

2. Introduction

Teriparatide is a recombinant parathyroid hormone used for the treatment of osteoporosis. Daily injections of teriparatide stimulates new bone formation leading to increased bone mineral density⁽¹⁾. The subcutaneous dose of teriparatide results in very low plasma levels characterised by rapid absorption and elimination, thus requires a highly sensitive method for estimation of analyte in human plasma. In addition, the critical challenges in method development are poor ionization, non-specific adsorption and predominantly carryover issues.

This motivated us to develop a novel and a highly sensitive quantification method for determination of teriparatide in human plasma using Shimadzu LCMS – 8060 triple quadrupole mass spectrometry coupled with Nexera X2 UHPLC.

Shimadzu Application Development Centre (ADC-SAIP), Navi Mumbai has developed and validated a rapid, simple, sensitive and novel method with the lowest limit of quantification (LLOQ) of 5 pg/mL.

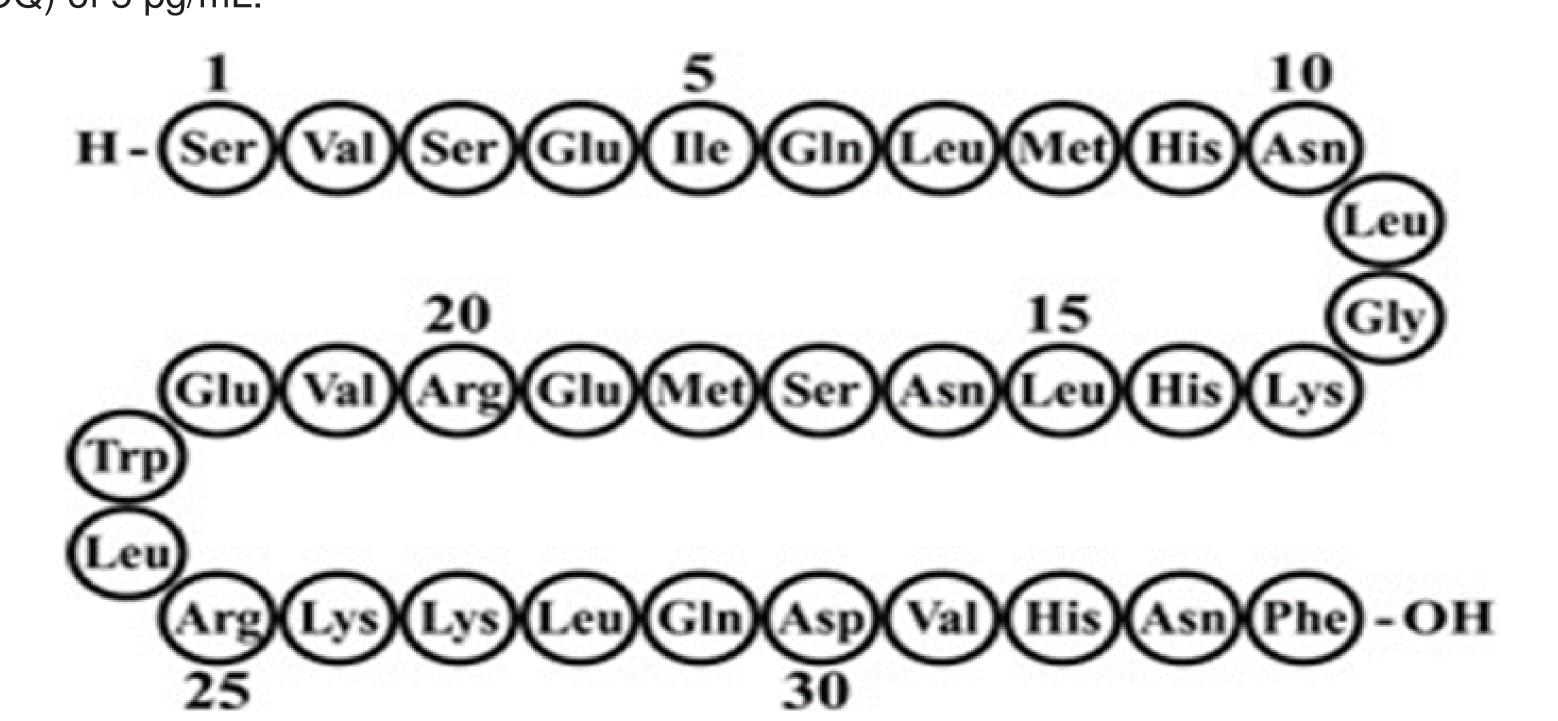


Figure 1. Structure of Teriparatide⁽²⁾

3. Materials and methods

3-1. Sample Preparation

Preparation of calibration curve standards and quality control (QC) samples

Calibration standards for teriparatide were prepared in K₂ ETDA human plasma at concentration levels ranging from 5.00 to 300.00 pg/mL. Quality control samples were prepared at concentration levels between 5.00 to 250.00 pg/mL for LLOQ QC, LQC, MQC and HQC respectively.

Sample extraction

Teriparatide was extracted from human plasma samples using Solid-Phase extraction technique as per below mentioned protocol:

- Conditioning and equilibration (1mL methanol followed by 1 mL water)
- Sample loading
- Wash 1 (1 mL water x 2 times)
- Wash 2 (1 mL 5% methanol in water x 1 time)
 Elution (1 mL of 100 % acetonitrile x 1 time)
- SPE eluent was blown under nitrogen gas and was reconstituted in 0.2 mL reconstitution solution (80% acetonitrile in water) before analysis on LC-MS/MS system

3-2. LC-MS/MS analysis

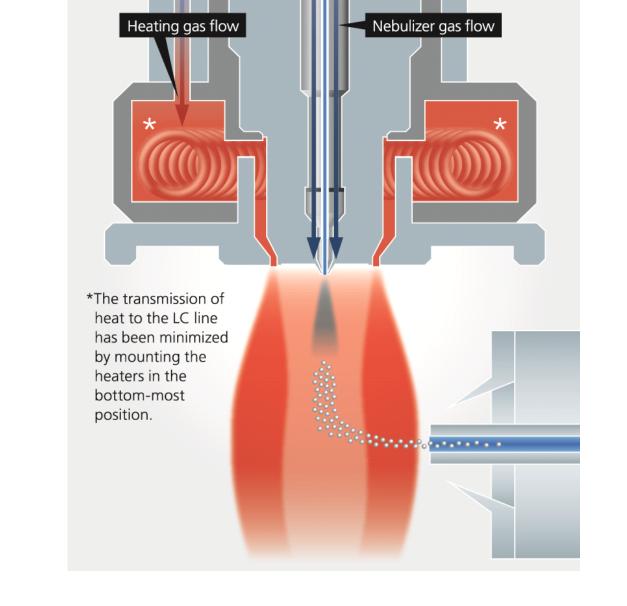


Figure 2. Nexera X2 with LCMS-8060

Figure 3. Heated ESI probe

LCMS-8060 triple quadrupole mass spectrometer by Shimadzu (Figure 2), sets a new benchmark in triple quadrupole technology with an unsurpassed sensitivity (UFsensitivity), ultra fast scanning speed of 30,000 u/sec (UFscanning) and polarity switching speed of 5 msec (UFswitching). This system ensures highest quality of data, with very high degree of reliability.

In order to improve ionization efficiency, the newly developed heated ESI probe (Figure 3) combines high-temperature gas with the nebulizer spray, assisting in the desolvation of large droplets and enhancing ionization. This development allows high-sensitive analysis of a wide range of target compounds with considerable reduction in background.

The details of analytical conditions are given in Table 1.

Table 1. Instrument parameters for analysis of Teriparatide

UHPLC condi	tion (Nexera X2)	MS parameters (LCMS-8060)			
Column	Shim-pack GIST C18 column 100 x	MS interface	Electro Spray Ionization		
Column	2.1 mm, 2.7 μm		(ESI)		
Mobile phase	A: 0.1% formic acid in water	Nitrogon gas flow	Nebulizing gas- 2 L/min;		
	B: Acetonitrile	Nitrogen gas flow	Drying gas- 10 L/min		
Flow rate	0.30 mL/min	Zero air flow	Heating gas- 10 L/min		
Elution mode	Gradient		Desolvation line- 250 °C;		
Column temp	40 °C	MS temp	Heating block- 300 °C;		
	40 C		Interface- 300 °C		

4. Results

4-1. Selectivity

Selectivity of the method was assessed in six different lots of blank human plasma. Interference from blank plasma was assessed for Teriparatide. No significant interference was observed at the retention time and MRM transition of analyte (refer Figure 4).

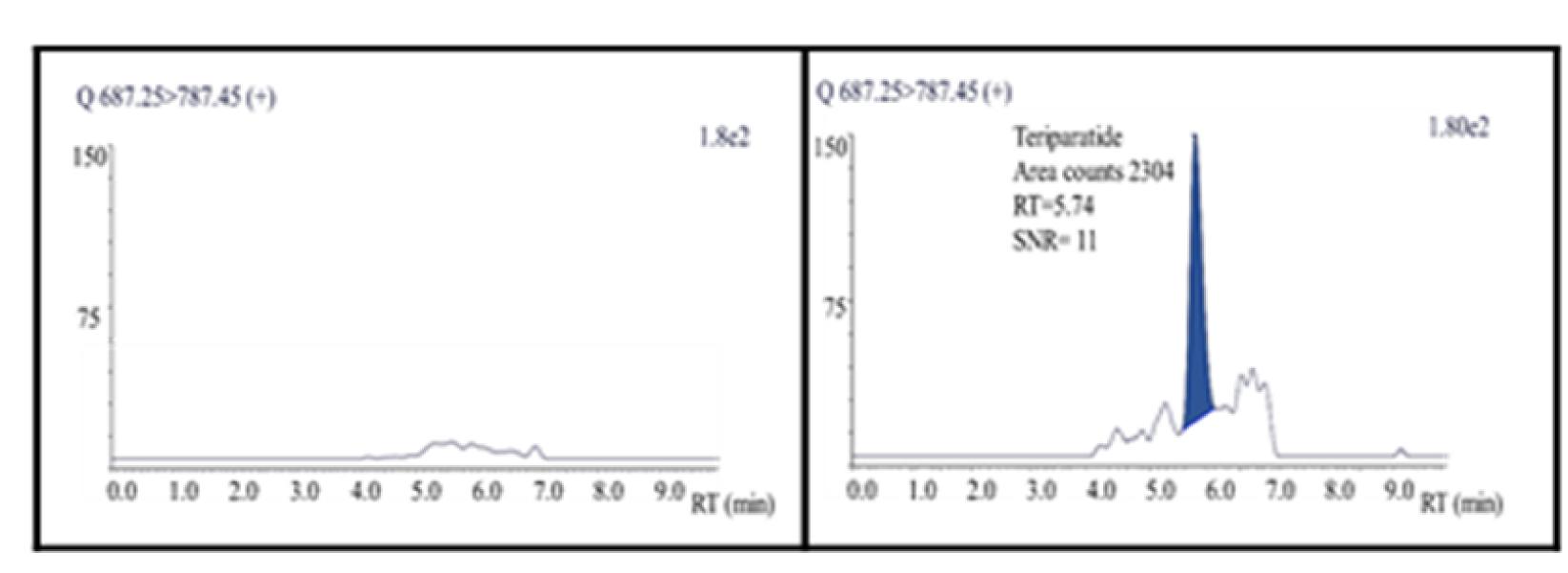


Figure 4. Chromatograms of extracted blank and extracted LLOQ (5.00 pg/mL)

4-2. Linearity

Calibration curve was found linear from 5.00-300.00 pg/mL (Table 2). The goodness of fit was consistently greater than 0.980 during the course of validation. Signal to noise ratio (s/n) at LLOQ level was found greater than 10:1, across 6 PA batches. Representative calibration curve is shown in figure 5

Table 2. Representative calibration curve of Teriparatide

Calibration curve data for teriparatide (n=6)								
Level	CC1	CC2	CC3	CC4	CC5	CC6	CC7	CC8
Nominal conc	5.000	10.000	25.000	50.000	100.000	150.000	200.000	300.000
Mean (n=6)	4.991	10.340	25.189	47.218	100.265	153.552	201.328	306.717
SD	0.242	1.501	2.376	3.440	8.602	9.097	11.420	34.428
% RSD	4.86	14.52	9.43	7.29	8.58	5.92	5.67	11.22
% Nominal	99.82	103.40	100.76	94.44	100.26	102.37	100.66	102.24

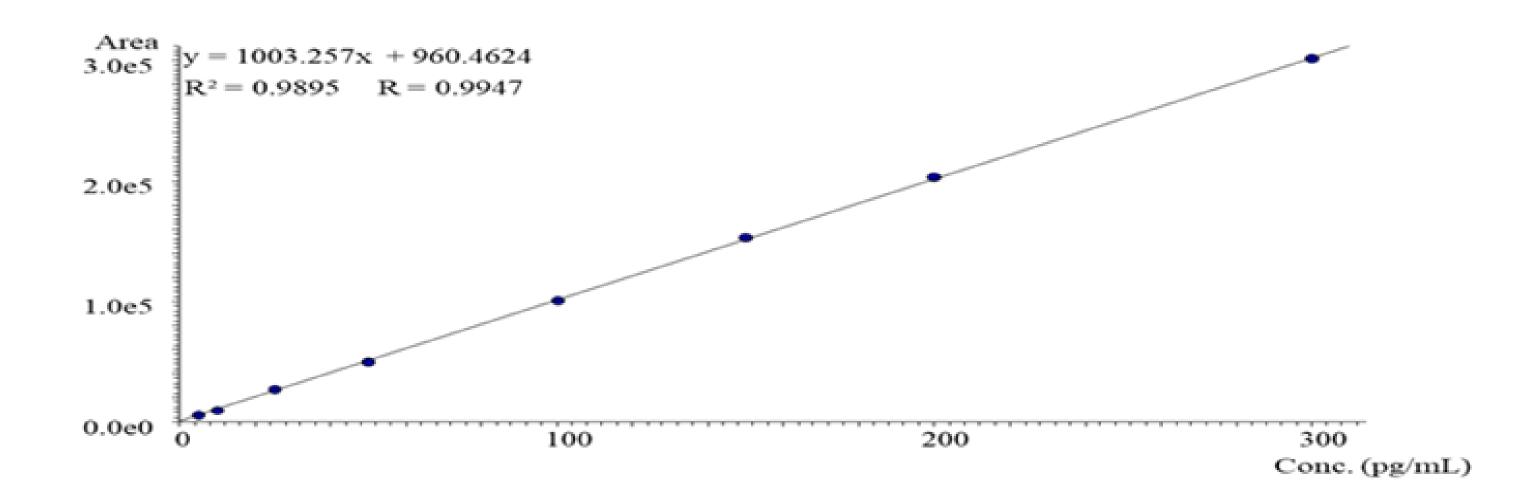


Figure 5. Representative calibration curve of Teriparatide

4-3. Intra-day Precision and accuracy

Intraday precision and accuracy was evaluated using 6 replicates of LLOQQC, LQC, MQC and HQC in single P&A batch. Precision and accuracy was found well with in acceptance criteria. Statistical data is summarized in table 3.

Table 3. Intra-day Precision and Accuracy

QC (n=6)	LLOQQC	LQC	MQC	HQC
Nominal concentration	5.00	10.00	150.00	250.00
	5.308	9.073	159.932	254.29
	5.364	9.204	153.143	285.953
PA batch observed	4.614	9.832	141.414	276.757
concentration (pg/mL)	5.773	9.521	138.772	272.599
	4.944	10.629	147.793	307.919
	5.645	10.739	150.36	282.333
Mean	5.275	9.833	148.569	279.975
STDEV	0.43	0.71	7.76	17.59
% CV	8.22	7.23	5.22	6.28
% Nominal	105.49	98.33	99.05	111.99

4-4. Global Precision and accuracy

Global precision and accuracy was evaluated on 6 PA batches. Precision and accuracy results were found well within the acceptance criteria with % CV < 13.68% and % nominal ranging from 93.13% to 102.17% at LQC, MQC and HQC level. At LLOQQC level, the % CV was found 15.12% and % nominal 102.29% (refer Table 4).

Table 4. Global Precision and Accuracy

QC level (n=36)	Mean Conc.	% Accuracy	% CV
LLOQ (5.0 pg/mL)	5.11	102.29	15.12
LQC (10.0 pg/mL)	9.84	98.40	13.68
MQC (150.0pg/mL)	139.69	93.13	11.37
HQC (250.0 pg/mL)	255.43	102.17	12.94

4-5. Recovery

Recovery experiments was studied at LQC, MQC and HQC level. Recovery was found precise, consistent and reproducible at all levels. Global recovery for teriparatide was found 80.37 % (refer Table 5).

Table 5. Global Recovery

Global recovery	Teriparatide
LQC	85.85
MQC	73.70
HQC	81.55
Mean	80.37
SD	6.16
% CV	7.67

4-6. Matrix effect

Matrix effect was studied at LQC and HQC levels. Mean matrix effect was found 1.03 for teriparatide. Statistical data for matrix effect is shown in Table 6. The results confirm the suitability of the method for quantitative estimation of teriparatide in human plasma.

Table 6. Matrix effect

Teriparatide	Post extracted sample	Aqueous sample	Matrix factor	Teriparatide	Post extracted sample	Aqueous sample	Matrix factor
LQC	7,100	6,216	1.14	HQC	2,16,207	1,95,725	1.10
	5,500	5,240	1.05		1,96,279	1,86,088	1.05
	6,500	6,676	0.97		1,92,251	1,96,876	0.98
	6,418	6,435	1.00		2,14,920	1,98,680	1.08
	6,719	6,426	1.05		2,08,751	1,92,847	1.08
	6,700	6,830	0.98		1,30,259	1,50,699	0.86
Mean			1.03				1.03
SD			0.06				0.09
% CV			6.11				8.89

4-7. Carry-over effect

Carry-over effect was evaluated by injecting extracted samples in the sequence of extracted blank, extracted highest calibrator, extracted blank and extracted lowest calibrator. No carryover was observed at the retention time and MRM transition of teriparatide in the extracted blank sample following the highest standard calibrator.

4-8. Other experiments

Based on validation guidelines, method was assessed for following experiments and results were found within acceptance criteria:

- Bench top stability
- Auto sampler stability
- Freeze thaw stability
- Extended batch verification

5. Conclusion

LCMS-8060, along with special sample preparation method and optimized chromatography provides a very selective and sensitive method for bioanalysis of teriparatide study samples in human plasma. Ultra-high speed and high-separation analysis was achieved on Nexera X2 UHPLC by using a simple mobile phase at a minimal gradient flow rate of 0.30 mL/min. By providing these ready-to-use solutions, we partner with your labs to achieve desired results in your scientific endeavors.

6. References

- 1. https://go.drugbank.com/drugs/DB06285 (accessed March 08,2022)
- 2. https://www.rxlist.com/forteo-drug.htm (accessed March 08, 2022)

Disclaimer: The products and applications in this presentation are intended for Research Use Only (RUO). Not for use in diagnostic procedures.