# 

### Determination of hydrophobic constituents of the root of Polygonum multiflorum using LC-MS/MS and their anti-inflammatory effect in rat hepatocytes

Saki Shirako<sup>1</sup>; Siti Mariyah Ulfa<sup>2, 3</sup>; Takanari Hattori<sup>4</sup>; Seiji Horie<sup>4</sup>; Jun Watanabe<sup>4</sup>; Faith Hays<sup>5</sup>; Mikio Nishizawa<sup>1</sup> <sup>1</sup>Ritsumeikan University, Kusatsu, Japan; <sup>2</sup>Brawijaya University, Ibaraki, Japan; <sup>3</sup>Ritsumeikan University, Ibaraki, Japan; <sup>3</sup>Ritsumeikan University, Ibaraki, Japan; <sup>4</sup>Shimadzu Corporation, Kyoto, Japan; <sup>5</sup>Shimadzu Scientific Instruments, Inc., Columbia, MD

### I. Overview

The root of *Polygonum multiflorum* Thunberg (Polygonaceae) is a crude drug known as *Kashu* and thought to improve *blood* deficiency as a Kampo concept. This crude drug has been included in Kampo formulas, such as *Tokiinshi*. In this study, we isolated six constituents from Polygonum roots by extraction and fractionation based on hydrophobicity. The content of each constituent was determined using liquid chromatography-triple quadrupole mass spectrometer (LC-MS/MS).To assess anti-inflammatory effect of the constituents, the interleukin (IL)-1 $\beta$ induced production of nitric oxide (NO), an inflammatory mediator, in rat hepatocytes was monitored. The EtOAc-soluble fraction significantly suppressed IL-1β-induced NO production without showing cytotoxicity, whereas the other fractions did not. Among six constituents emodin and emodin-8-O-β-D-glucopyranoside significantly suppressed NO production in hepatocytes, whereas the others showed less potency in suppressing NO production. These results suggest that hydrophobic constituents in the EtOAc-soluble fraction may be responsible for the anti-inflammatory effect of *Polygonum* roots.

### 2. Introduction

The root of Polygonum multiflorum Thunberg (Polygonaceae) is a crude drug known as *Kashu* and thought to improve *blood* deficiency as a Kampo concept. This crude drug has been included in Kampo formulas, such as *Tokiinshi* to treat eczema and dermatitis with itchiness. There are some reports on the constituents in *Polygonum* roots with antiinflammatory. However, comparison of anti-inflammatory potencies of these constituents is hardly reported. Here, we isolated constituents by extraction from *Polygonum* roots and fractionation based on hydrophobicity and examined their anti-inflammatory effect using primary cultured rat hepatocytes. The content of each constituent was determined using liquid chromatography-triple quadrupole mass spectrometer (LC-MS/MS).

### 3. Materials and Methods

#### **3-1.** Preparation of sample .

Dried roots of *Polygonum multiflorum* Thunberg (collected from Sichuan Province, China) were pulverized and extracted with methanol under reflux. The methanol extract was resuspended in water and partitioned based on hydrophobicity into ethyl acetate (EtOAc)-soluble fraction (fraction A), *n*-butanol-soluble fraction (fraction B), and watersoluble fraction (fraction C). From fraction A of a *Polygonum* root extract, constituents were purified by silica gel chromatography, identified by NMR spectrum analyses, and numbered as compounds **1-6**.

### **3-2.** Assessment of anti-inflammatory effect

A liver of Wistar rat was perfused with collagenase, and the dispersed cells were centrifuged, resuspended, and seeded at 1.2  $\times$  10<sup>6</sup> cells per 35 mm diameter dish. Interleukin (IL)-1 $\beta$ -induced production of nitric oxide (NO), an inflammatory mediator, was monitored using the primary cultured rat hepatocytes to assess anti-inflammatory activity.

#### **3-3. Analytical Conditions**

LC-MS/MS analysis was performed using a Nexera X3 system coupled with a LCMS-8060 (Shimadzu Corporation, Japan). Separation was achieved on an Inertsil ODS-HL column (GL Sciences, Japan.) under gradient elution.

#### HPLC (Nexera X3 system)

| Mobile phase:   | 0.1% formic acid in water (solvent A)            |
|-----------------|--------------------------------------------------|
|                 | 0.1% formic acid in acetonitrile (solvent B)     |
| Flow rate       | 0–5 min, 10–100% B; 5–7.5 min, 100% B;           |
|                 | 7.5–7.51 min, 100–10% B; and 7.51–10 min, 10% B. |
| Injection vol.: | 1 μL                                             |

#### MS (LCMS-8060)

| Ionization: | ESI (Negative mode) |
|-------------|---------------------|
| Mode:       | MRM (Table. 1)      |



Figure 1 Nexera X3 + LCMS-8060

| Table 1 | MRM c | ondition |
|---------|-------|----------|
|         |       |          |

| No | Compounds                                              | MRM (Precursor ion > Product ion) |
|----|--------------------------------------------------------|-----------------------------------|
| 1  | Physcion                                               | 283.7 > 269.05, 225.11, 241.1     |
| 2  | Emodin (Em)                                            | 269.05 > 225.15, 241.1, 197.1     |
| 3  | Physcion-8-O-β-D-glucopyranoside                       | 445.1 > 283.05, 240.1, 325.05     |
| 4  | Catechin                                               | 289.1 > 245.15, 203.15, 109.1     |
| 5  | Emodin-8-O-β-D-glucopyranoside (Em-Glc)                | 430.9 > 269.1, 225.1, 240.15      |
| 6  | 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (THSG) | 405.1 > 243.05, 173.15, 137.05    |
|    |                                                        |                                   |

#### 4. Result

#### 4-1. Fractionation of methanol extract of **Polygonum** roots

The constituents of Fraction A of a *Polygonum* root extract were purified by silica gel chromatography and identified by NMR spectrum analyses (Figure 2). The constituents isolated were physcion (Compound 1), emodin (2), physcion-8-O- $\beta$ -D-glucopyranoside (3), emodinnd-8-O- $\beta$ -D-glucopyranoside (5), and catechin (4), and THSG (6).



Figure 2 Fractionation of methanol extract of *Polygonum* roots

Among the constituents detected by LC-MS/MS, the content of THSG was the highest (83.9%) in fraction A (Figure 3). Emodin and physcion were 5.41% and 3.61%, respectively, whereas the content of their glycosides was around 1%. Given that the content of THSG was the highest in fraction A and the yield of fraction A was 24.3%, the content of THSG is calculated as 20.4% in the *Polygonum* root extract.





## WP 158

#### 4-2. Anti-inflammatory effect of fractions and constituents

NO production was induced by IL-1β in primary cultured rat hepatocytes, and the effects of a *Polygonum* root extract and it fractions were assessed using the hepatocytes. NO production increased in the presence of IL-1 $\beta$ , whereas NO production was not observed in the absence of IL-1 $\beta$ . When a *Polygonum* root extract was added into the medium, it decreased IL-1 $\beta$ -induced NO production without showing cytotoxicity. When fraction A was added, it decreased NO production in a concentration-dependent manner, without showing cytotoxicity at the concentrations applied. Fraction B also decreased NO production, whereas fraction C did not cause a significant change.

Then, the potencies of the six compounds in the suppression of NO production in the hepatocytes were estimated. Among the compounds, THSG, did not affect NO production at a concentration up to 800  $\mu$ M, and an IC<sub>50</sub> value could not be calculated. Emodin and emodin-8-O- $\beta$ -D-glucopyranoside efficiently suppressed NO production, without showing cytotoxicity (Figure 4). In contrast, catechin did not significantly inhibit NO production.



Figure 4 Comparison of anti-inflammatory effect of Fraction A, emodin, and emodin-8-O-β-<sub>D</sub>-glucopyranoside

### 5. Conclusions

#### Our results suggest that hydrophobic constituents in the **EtOAc-soluble fraction may possess the anti-inflammatory** effect by *Polygonum* roots.

Disclaimer: LCMS-8060 and Nexera X3 system are intended for Research Use Only (RUO). Not for use in diagnostic procedures. Nexera and LCMS are trademarks of Shimadzu Corporation.