
SHIMADZU

Untargeted PFAS identification and targeted PFAS library screening workflows for groundwater analysis using a QTOF mass spectrometer

Ethan Hain, Om Shrestha, Kathleen Luo, Christopher Gilles, Evelyn Wang, Xiaomeng Xia, Robert English, Tiffany Liden Shimadzu Scientific Instruments, 7102 Riverwood Dr., Columbia, MD 21046 U.S.A.

Introduction

Per- and poly-fluoroalkylated substances (PFAS) have garnered increasing regulatory and public health interest as a result of the widespread occurrence and validated toxicity of these emerging contaminants. Although there are several specific PFAS that are currently being regulated on a federal and state level, there are potentially thousands of different PFAS that may exist in the environment. The toxicity associated with each of these individual PFAS will drive regulations; therefore, the identification of novel PFAS is a critical primary step in documenting the need for individual PFAS regulations. Once novel PFAS are characterized, these analytes of interest can be quickly identified in environmental matrices (e.g., groundwater) through targeted screening for easier monitoring.

Structures of PFAS studied

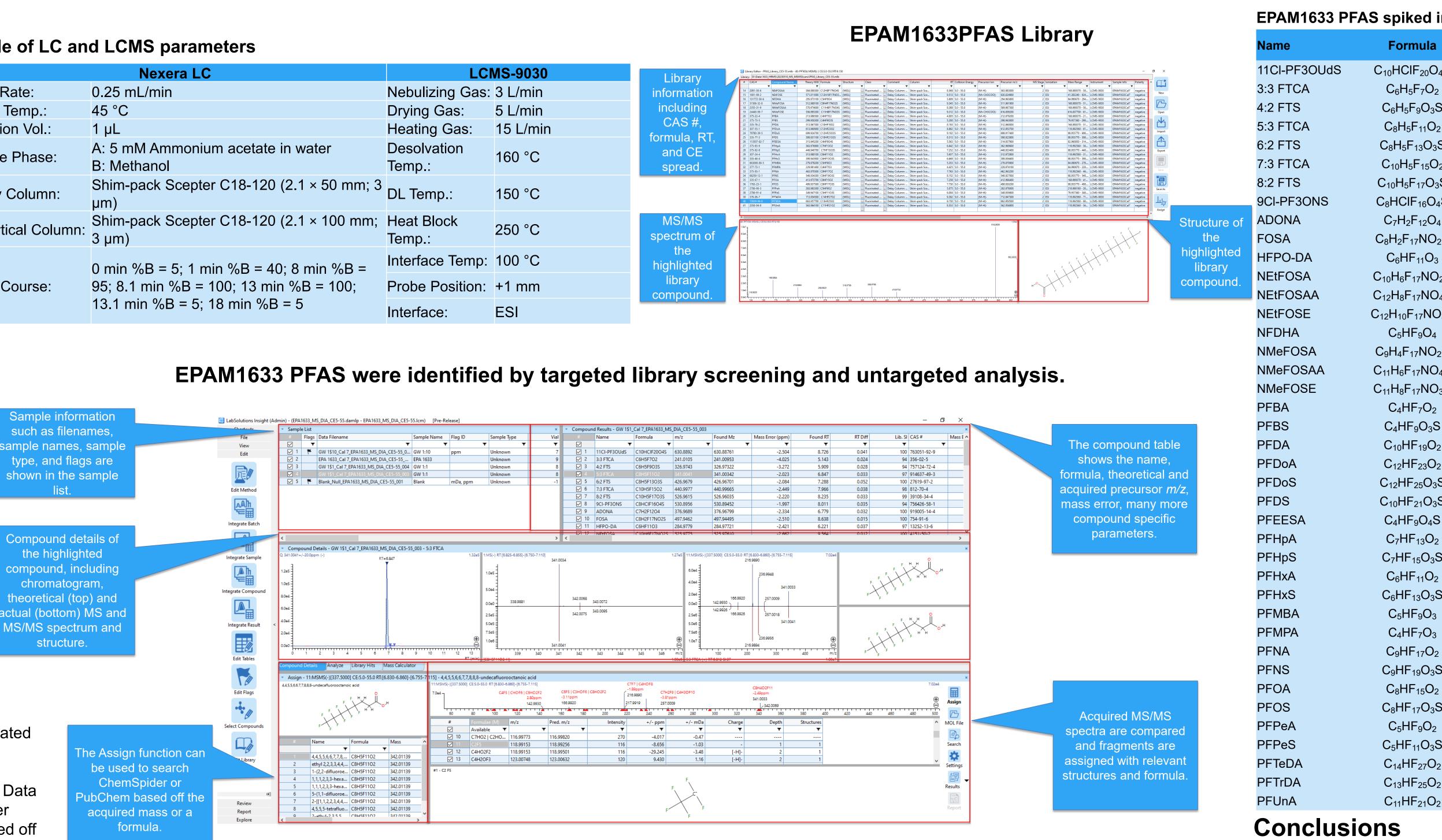
Methods

A neat standard and spiked groundwater sample containing the 40 PFAS from 80 100 120 140 160 180 200 220 <u>240 260 280 300 320 340 360 380 400 420 440 460 480 5</u> Acquired MS/MS Intensity Charge Depth Structures +/- ppm elect Compounds Environmental Protection Agency (EPA) Method 1633 were chromatographically separated spectra are compare C7HO2 | C2HO... 116.99773 116.99820 # Name Formula Mass 118.99256 and fragments are C2F5 118.99153 using a Shim-pack Scepter C18-120 column (2.1 \times 100 mm; 3 μ m) with a Shim-pack he Assign function can
 I2
 C4HO2F2
 118.99153
 118.99501

 I3
 C4H2OF3
 123.00748
 123.00632
4,4,5,5,6,6,7,7,8,... C8H5F11O2 342.01139 assigned with relevant ethyl 2,2,3,3,4,4,... C8H5F11O2 342.01139 be used to search Scepter C18-120 delay column (2.1 \times 50 mm; 3 μ m) and mobile phases of 5 mM 1-(2,2-difluoroe... C8H5F11O2 342.01139 structures and formul 1,1,1,2,3,3-hexa... C8H5F11O2 342.01139 ChemSpider or ammonium acetate in water and methanol (no additives) at a flow rate of 0.25 mL/min. Data .1,1,2,3,3-hexa... C8H5F11O2 342.01139 5-(1,1-difluoroe... C8H5F11O2 342.01139 JbChem based off th 2-[[1,1,2,2,3,4,4,... C8H5F11O2 342.01139 Review were acquired on a Shimadzu LCMS-9030 quadrupole time-of-flight mass spectrometer 4,5,5,5-tetrafluo... C8H5F11O2 342.01139 acquired mass or a Report 2_athul_2 2 5 5 CRH5E11O2 2/2 01120 Explore using a negative mode MS scan ranging from 40-950 m/z, targeted MS/MS scans based off formula. of target analyte *m*/*z*, and data-independent acquisition (DIA) MS/MS scans of a variable precursor isolation width and collision energy spread of 5-55 V. LabSolutions and LabSolutions Insight Explore software were used to obtain the data and perform data Disclaimer: All content contained herein resulted solely from Shimadzu, and no conflict of interest exists. The products and applications are intended for Research Use Only (RUO). Not for use in diagnostic procedures analyses.

Table of LC and LCMS parameters

Flow Rate: Oven Temp.: Injection Vol.:


Mobile Phase

Delay Column

Analytical Colu

Time Course:

	Nexera LC	LCI	MS-9030	Library	Library E
	0.25 mL/min	Nebulizing Gas:	3 L/min	information	Library E. Library E. Librar
	45 °C	Drying Gas:	5 L/min	including	17 3150 18 2355 19 2444 20 375-
:	1 µL	Heating Gas:	15 L/min	CAS #, formula, RT,	21 375-1 22 335-1 23 307-1 24 7978 25 335-1
י ב	A: 5 mM Ammonium acetate in water B: Methanol	Desolvation Temp.:	160 °C	and CE spread.	26 1135 27 375-1 28 375-1 29 307-1 30 355-1 31 8630 32 377- 33 375-1
n:	Shim-pack Scepter C18-120 (2.1 × 50 mm; 3 µm)	DL Temp.:	150 °C		34 6825 35 335-1 36 1763 37 2706 38 2706 39 376-1 40 7262 41 2058
li imn'	Shim-pack Scepter C18-120 (2.1 × 100 mm; 3 μm)	Heat Block Temp.:	250 °C	MS/MS spectrum of	<
:	0 min %B = 5; 1 min %B = 40; 8 min %B = 95; 8.1 min %B = 100; 13 min %B = 100;	Interface Temp:	100 °C	the highlighted	7.0e6 6.0e6 5.0e6 4.0e6
		Probe Position:	+1 mm	library compound.	3.0e6 2.0e6 1.0e6 118.992 0.0e0
	13.1 min %B = 5; 18 min %B = 5	Interface:	ESI		

WP 304

function

EPAM1633 PFAS spiked into groundwater (15.625-390 ppb) and identified by DIA

Into	groundwat	er (15.025	-390 ppp) a	na laen	tinea	עם אט
	Theoretical	Acquired	Mass Error	Found	RT	Lib. SI
	m/z	m/z	(ppm)	RT	Diff.	
₄ S	630.8892	630.8876	-2.504	8.726	0.04	100
2	241.0105	241.0095	-4.025	5.143	0.02	94
5	326.9743	326.9732	-3.272	5.909	0.03	94
2	341.0041	341.0034	-2.023	6.847	0.03	97
S	426.9679	426.9670	-2.084	7.288	0.05	100
2	440.9977	440.9967	-2.449	7.966	0.04	98
S	526.9615	526.9604	-2.220	8.235	0.03	99
₄S	530.8956	530.8945	-1.997	8.011	0.04	94
4	376.9689	376.9680	-2.334	6.779	0.03	100
₂ S	497.9462	497.9450	-2.510	8.638	0.02	100
6	284.9779	284.9772	-2.421	6.221	0.04	97
$_2S$	525.9775	525.9761	-2.662	9.564	0.01	100
$_4S$	583.9830	583.9816	-2.363	8.600	0.03	93
) ₃ S	630.0249	630.0233	-2.492	9.533	0.01	100
	294.9658	294.9646	-4.272	5.852	0.03	97
₂ S	511.9619	511.9608	-2.070	9.358	0.01	100
$_4S$	569.9673	569.9660	-2.281	8.426	0.04	95
₃ S	616.0092	616.0079	-2.143	9.332	0.01	100
	212.9792	212.9785	-3.146	4.038	0.02	93
3	298.9430	298.9424	-2.107	5.236	0.02	100
2	512.9600	512.9585	-3.100	8.220	0.04	89
2	612.9537	612.9520	-2.773	8.909	0.05	90
S	698.9174	698.9158	-2.332	9.149	0.05	100
S	598.9238	598.9225	-2.204	8.558	0.04	100
5	314.9379	314.9372	-2.350	5.602	0.03	99
<u>)</u>	362.9696	362.9688	-2.369	6.704	0.04	92
S	448.9334	448.9325	-2.027	7.289	0.03	100
!	312.9728	312.9720	-2.460	5.993	0.04	93
S	398.9366	398.9360	-1.404	6.707	0.03	100
	278.9709	278.9701	-2.904	5.400	0.03	94
	228.9741	228.9735	-2.489	4.456	0.02	100
2	462.9632	462.9620	-2.592	7.798	0.04	88
S	548.9270	548.9256	-2.587	8.200	0.04	100
2	412.9664	412.9657	-1.768	7.291	0.04	97
5	498.9302	498.9290	-2.465	7.779	0.04	100
	262.9760	262.9751	-3.422	5.112	0.03	92
S	348.9398	348.9388	-2.780	6.045	0.03	100
2	712.9473	712.9452	-2.875	9.433	0.06	98
2	662.9505	662.9491	-2.006	9.188	0.05	97
2	562.9568	562.9553	-2.665	8.593	0.04	98
_						

The 40 PFAS from EPAM1633 were used to generate a library from a single mixture, and then were confirmed to function for targeted library screening and untargeted identification in groundwater using the Insight Explore Assign