SHIMADZU

Media Component Analysis during Human Primary T Cell Culture using a Triple Quadrupole Mass Spectrometer

Evelyn H. Wang¹; Stephen Kurzyniec¹; Erin Strom²; Tammy Jones-Lepp²; Amanda Leisgang²; Andrew Ortiz²; Jefferson Kinney²; Yoshiyuki Okamura¹ ¹Shimadzu Scientific Instrument, Columbia, MD; ²University of Nevada Las Vegas, Las Vegas, NV

1. Overview

Using a rapid and multicomponent LCMS method to analyze T cell culture media during the expansion process to ultimately increase titer

2. Introduction

Chimeric antigen receptor (CAR) T cell gene therapy has shown success in treating cancers such as leukemias and lymphomas. A CART cell therapy consists of T cell extraction, enrichment and activation, transduction, expansion, isolation, and administration steps. The composition of the cell culture media used during the expansion phase can have a significant impact on the final quality of the product CART cells and the therapeutic efficacy. Therefore, obtaining comprehensive realtime media composition results to monitor cell consumption and secretion prior to harvest will be beneficial. The data will provide insight on the progress of the cell growth and allow the researchers to intervene, if modification is necessary, to increase the T cell's and CART cell's quality and quantity.

3. Method

Experimental growing flasks containing primary human T cell (to mimic the CAR T cell expansion process), T cell expansion medium, human CD3/CD28 T cell activator, cytokine, and IL-2 were incubated at 37 °C with 5% CO₂. In this study, commercially available T cell was used to mimic the CAR T cell expansion process. The result obtained from the T cell culture should be applicable to the CAR T cell expansion workflow. In the two experimental growing flasks, flask A did not go through any media exchange throughout the experiment while flask B went through fresh media exchange at day 3, 5, and 7. Media samples were collected every two hours in the first day and every six hours afterwards.

T Cell media samples were subjected to protein crash using acetonitrile and centrifugation at 15,000 rpm for 10 min at 4°C. Supernatants were further diluted with water prior to analysis. (Figure 1) A reversed phase gradient chromatography was done on a Shimadzu Cell Culture Profiling column (150 mm x 2.1 mm, 3 µm). Mobile phases for the chromatography were water and acetonitrile with 0.1% formic acid.

Figure 1. Sample preparation procedure for cell culture profiling analysis

Triple quadrupole mass spectrometry with its fast scan and polarity switching speed is a desirable tool for comprehensive media composition analysis. A Shimadzu LCMS-8060 triple quadrupole mass spectrometer with the capability to simultaneously analyze multiple compound groups was used to analyze T cell culture media. A 17-minute LCMS method that analyzes 144 cell growth related compounds was developed for T cell/CART cell culture media analysis. (Table 1) Cell culture related compounds including amino acids, nucleic acids, metabolites, sugars, and vitamins were simultaneously analyzed by MRM in both ESI positive and negative modes. A total of 40 media samples were collected and analyzed from each T cell culture experimental flask for the whole culture period (9 days). Duplicate results were obtained for each sample.

Method Package version 3

Amino acids
1-Methylhistidine
2-Aminoadipic acid
2-Aminobutyric acid
3-Hydroxyanthranilic acid
3-Hydroxyisobutyric acid
3-Methyl-2-oxovaleric aci
3-Methylhistidine
4-Aminobutyric acid
4-Hydroxyphenyllactic ac
4-Hydroxyproline
5-Glutamylcysteine
5-Hydroxytryptophan
5'-Methylthioadenosine
5-Oxoproline
Acetylcarnitine
Alanine
Alanyl-glutamine
Anthranilic acid
Arginine
Argininosuccinic acid
Asparagine
Aspartic acid
Asymmetric dimethylargi
Carnitine
Citrulline
Creatine
Cystathionine
Cysteine
Cystine
Dopa
Formylkynurenine
Glutamic acid
Glutamine
Glutathione
Glycine
Giycine

Gluconic acid Hexose (Glucose) Sucrose Threonic acid

Riboflavin			
Niacinamide			
Nicotinic acid			
Pantothenic acid			
4-Pyridoxic acid			
Pyridoxal			
Pyridoxalphosphate			
Pyridoxine			
Biotin			
4-Aminobenzoic acid			
Folic acid			
Choline			
Ascorbic acid			
Cyanocobalamin			
Lipoic acid			
Inte			

2-Isopropylmalic acid

Table 1. 144 registered compounds in the Cell Culture Media Profiling

ige	version 5.	
and	their metabolites	Nucleic acids and their metabolites
	Glycyl-glutamine	3-Aminoisobutyric acid
	Histidine	3-Aminopropanoic acid
	Homocysteine	Adenine
	Homocystine	Adenosine
	Hydroxykynurenine	Adenosine monophosphate
	Hydroxylysine	Cytidine
	Indole-3-acetic acid	Cytidine 3',5'-cyclic monophosphate
	Isoleucine	Cytidine monophosphate
	Kynurenic acid	Cytosine
	Kynurenine	Deoxyadenosine
	Leucine	Deoxycytidine
	Lysine	Deoxycytidine monophosphate
	Methionine	Deoxyguanosine
	Methionine sulfoxide	Deoxyguanosine monophosphate
	N-Acetylaspartic acid	Guanine
	N-Acetylcysteine	Guanosine
	Norepinephrine	Guanosine 3',5'-cyclic monophosphate
	Ophthalmic acid	Guanosine monophosphate
	Ornithine	Hypoxanthine
	Oxidized glutathione	Inosine
	Phenylalanine	Inosine monophosphate
	Pipecolic acid	Orotic acid
ne	Pipecolic acid	Thymidine
	Proline	Thymidine monophosphate
	Putrescine	Ihymine
	Saccharopine	Uracil
	S-Adenosylhomocysteine	
	Serine	Uridine
	Serotonin	Uridine monophosphate
	Symmetric dimethylarginine	Xanthine
	Inreonine	Xanthosine
	Tryptopnan	Xanthosine monophosphate
	l vrosenie osid	
	Violino	
	vaime	
Sug	ars	Others
		2-Aminoethanol
		2-ketoglutaric acid
		Acetylcholine
		Acotinic acid
/itamins		Citric acid
		Fumaric acid
		Glyceric acid
		Glycolic acid
		Glyoxylic acid
		Isocitric acid
		Lactic acid
		Malic acid
		Mevalonic acid
		U-Phosphoethanolamine
		Penicillin G
		Kesveratrol
		Succinic acid Succinic acid
nal Standard		Taurine

4. Results

T cell culture media samples of flask A (without media exchange) and flask B (with fresh media exchange) from day 0 to 9 were collected and analyzed. Chromatograms of the media at hour 0 and hour 210 were compared in both experimental flasks. (Figure 2) Flask B at the end of the experiment obtained ~3 times higher live cell count. Differentiating compounds with significantly higher concentrations in flask B were shown on the volcano plot. (Figure 3) Time course area trends for compounds of interest and potential T cell metabolomic mechanism diagrams are shown in figure 4-6.

Figure 2. Chromatograms of T cell culture media in flask A (without media exchange) and B (with media exchange) at the beginning (hour 0) and the end (hour 210) of the cell culture period. Differences between the two experimental flasks were especially apparent in early eluting $(1 - 2 \min)$ compounds.

Figure 3. Live T cell count throughout the cell culture period is shown on the left. Flask B with three media exchanges during culture resulted in significant higher live T cell count at the end. The volcano plot of the T cell culture media from flask A and B at the end of the culture period is shown on the right. Differentiating compounds that were significantly higher in flask A and B are shown in green and red, respectively.

O-Phosphoethanolamine Glutamine

Figure 4. Area trends of glutamine decreased as O-phosphoethanolamine increased during T cell culture. This trend could suggest that glutamine starvation lead to increase in Ophosphoethanolamine by downregulation of the PCYT2 enzyme.¹

Figure 5. Area trends of serine and glycine demonstrated that serine to glycine process is one of the major factor of upregulate T cell activation. Extracellular serine is required for optimal T cell expansion process as it directly controls T cell proliferative capacity.²

Figure 6. After T cell activation, increase in glycolysis over oxidative phosphorylation to sustain rapid cell growth was observed with the decreasing trend of glucose and the increasing trend of lactic acid.³

5. Reference

- starvation through downregulation of PCYT2." Cell Reports 29.1 (2019): 89-103.
- (2017): 345-357.
- Frontiers in immunology 6 (2015): 1

All content contained herein resulted solely from Shimadzu, and no conflict of interest exists. Disclaimer: The products and applications in this presentation are intended for Research Use Only (RUO). Not for use in diagnostic procedures.

Osawa, Tsuyoshi, et al. "Phosphoethanolamine accumulation protects cancer cells under glutamine

2. Ma, Eric H., et al. "Serine is an essential metabolite for effector T cell expansion." Cell metabolism 25.2

Palmer, Clovis S., et al. "Glucose metabolism regulates T cell activation, differentiation, and functions."