SHIMADZU

Determination of Paraquat in Drinking Water by LCMS-2050

<u>Marilia Santoro Cardoso¹</u>; Marcos A Pudenzi¹; Luisa B Ambrosio¹; Ichiro Hirano¹ ¹Shimadzu do Brasil, Barueri, Brazil

1. Introduction

- Paraquat (Fig. 1) is an herbicide widely used in the world and extremely toxic for humans and animals, capable of controlling the weeds growth in crops.¹
- According with Portaria GM/MS No. 888 (2021) of the Ministry of Health in Brazil, which establish norms and water potability standards, the maximum value allowed of paraquat in drinking water is 13 μg/L.² The aim of this work is to develop a method by direct analyses of paraquat in drinking water using a single quadrupole (LCMS-2050).

Fig. 1 Molecular structure of paraquat.

2. Methods

Analytical chromatography was performed using an LC-MS (Nexera XSi - LCMS-2050, Shimadzu®, Japan) with the following conditions of HPLC and MS (Table 1 and 2, respectively).

Table 1Method parameters of HPLC system.

Column	Zic®-Hilic (100 x 2.1mm x 3.5 µm). Merck - PN:
	1504410001
Mobile Phase	A: Water + 20mM Ammonium formate + 0.5%
	Formic acid
	B: Acetonitrile + 0.3 % formic acid
Flow and Column Temp.	0.4 mL/min - 40 °C
Injection Volume	1 µL

Fig. 2 LCMS 2050 single quadrupole.

Interface Voltage	0.5 kV
Interface	ESI +
Nebulizing Gas Flow	2 L/min
Heating Gas Flow	7 L/min
Drying Gas Flow	4 L/min
Dessolvation Temp.	450 °C
DL Temp.	200 °C

Table 2 Method parameters of MS system.

3. Results

- Method optimization was performed evaluating the analyte intensity with different mobile phases and interface parameters, such as adjust of m/z, interface voltage, nebulizing gas flow, drying gas flow and heating gas flow, in this order (Graphic 1 a-e).
- ◆ Initially, with the aim of increasing the analyte intensity was injected a standard of paraquat at a concentration of 100 ng/mL in different organic mobile phases: acetonitrile versus formic acid (0.3%) in acetonitrile. As a result, a paraquat peak with greater intensity was observed using acetonitrile as mobile phase. Then, a standard of the same concentration was injected in different aqueous mobile phases: ammonium formate (20mM) and formic acid (0.5%), and formic acid (0.5%). As a result, it was observed a better reproducibility using ammonium formate in the phase.
- Following optimizing the chromatography parameters, an optimization of mass spectrometry parameters was performed. According to the results obtained, interface parameters stablished were adjust of m/z was set at 93.1, interface voltage at 0.5 kV, nebulizing gas flow at 2 L/min, drying gas flow at 4 L/min, heating gas flow at 7 L/min, desolvation temperature at 450 °C and desolvation line temperature at 200 °C.

Graphic.1 Method optimization results using the analyte intensity evaluating interface parameters (adjust of m/z, interface voltage, nebulizing gas flow, drying gas flow and heating gas flow)

- ♦ After mass spectrometry optimization, a triplicate linearity range in water was evaluated by SIM (single ion monitoring) mode with the selected m/z. The method demonstrated to be linear through the calibration curve with a r² of 0,99. The results are presented in Fig. 3, which displays the calibration curve and chromatographic peaks at limit inferior of quantification (LIQ) in ultrapure water samples.
- Finally, a triplicate linearity range in real sample (tap water) was evaluated, resulting in the determination of paraquat in the limit inferior of quantification with a r² of 0,99 in the calibration curve. In Fig. 4 was presented the chromatographic peaks at LIQ and blank in real samples (tap water).

ThP 590

Fig. 4 Chromatographic peaks at limit of quantification in and blank in real samples (tap water).

4. Conclusion

It was possible to obtain satisfactory results for the determination of Paraquat in tap water using a mass spectrometry single quadrupole, LCMS-2050, which facilitates the work routine and reduces analysis costs. The results obtained reached the limits lower than those recommended in Ordinance GM/MS n° 888 of May 4, 2021, without the need for pre-treatment of the samples.

Reference

2) Gabinete do Ministro. Portaria Nº 888, de 04 de maio de 2021.

Disclaimer:

The products and applications in this presentation are intended for Research Use Only (RUO). Not for use in diagnostic procedures.

The authors are affiliated and funded by Shimadzu do Brasil..

¹⁾ Martins T. (2013). Semin. Cienc. Biol. Saude. 34(2):175-86.