SHIMADZU

Multi-Residue Pesticide Analysis in Norbixin colour additive oleoresin using GC-MS/MS

Durvesh Sawant, Rahul Dwivedi, Prashant Hase, Sanket Chiplunkar, Hemant Kesarkar, Siddhesh Sabadra, Jitendra Kelkar, Pratap Rasam Shimadzu Analytical (India) Pvt. Ltd., 1 A/B Rushabh Chambers, Makwana Road, Marol, Andheri (E), Mumbai-400059, Maharashtra, India.

1. Overview

Norbixin is the yellow-(red) orange carotenoid, which in combination with bixin, constitutes for 80% of red-orange annatto dye. It is extracted from the pericarp of the seeds of *Bixa Orellana* (Figure 1). The annatto pigment has global economic significance, as it is one of the most widely used natural dyes to color food, cosmetics and pharmaceutical products.

Owing to its large culinary uses and other diverse applications, use of chemical pesticides for its production in large quantities is imperative. Dye extraction process may result in concentration of pesticides and in turn contribute to adverse impact on human health when incorporated in various preparations. Hence quantitation of residual pesticides in norbixin colour additive becomes very important.

As the oleoresin is a complex matrix for extraction, it is required to develop a rugged, sensitive and efficient method for residual pesticide analysis.

Figure 1 Bixa Orellana seeds and it's extract

2. Introduction

This study reports a highly sensitive method for simultaneous quantification of multiple pesticides in complex matrix of norbixin using modified QuEChERS^[1] with triple quadrupole gas chromatography (GC-MS/MS) system.

3. Materials and methods

For this study, customized reference standard mixtures of more than 50 most observed pesticides in colour additives were procured from Restek[®] Corporation.

Norbixin oleoresin sample was extracted and used to prepare matrix-matched calibration standards and spiked samples. This method was validated for criteria mentioned in SANTE Guidelines^[2].

GCMS-TQ8040 NX (Figure 2), manufactured by Shimadzu Corporation Japan, was used to quantify residual pesticides in Norbixin oleoresin sample.

3-1. Method development

Instrumental method was developed based on chromatographic and mass spectrometric parameters. Smart Pesticides Database Ver.2 for GC-MS/MS enabled quick instrumental method optimization for higher throughput. For most of the pesticides, 1 target and 2 reference MRM transitions were included in the method. Shimadzu's 'LabSolutions Insight' software was used for data processing, which helped in evaluating validation parameters with ease. This greatly reduced the method development and optimization time. Pretreatment method was developed based on modified QuEChERS extraction for better and consistent recoveries.

3-2. Sample and standard preparation

Norbixin oleoresin sample was extracted using acetonitrile solvent along with sodium chloride (AR grade), anhydrous magnesium sulphate (MgSO4) (AR grade) salts in optimized proportion to maximize recoveries of pesticides. After extraction, the supernatent was subjected to clean up.

The clean up was performed using optimum combination of C18, GCB (Graphitized Carbon Back), PSA (Primary secondary amine) and anhydrous MgSO₄ to minimize matrix interference, reduce instrument contamination and achieve lower LOQs. The extract was filtered through 0.22 µm PTFE filter. Final reconstitution volume was adjusted such that recovery samples were diluted by 2.5 times. All samples were analyzed as per conditions shown in table 1.

Preparation of solvent standard concentration levels

The multi-residue pesticides mixtures obtained from Restek® were diluted using ethyl acetate to prepare standard mixture stock solution of about 1000 ppb. From this, concentration levels of 10 ppb, 25 ppb, 50 ppb, 250 ppb and 500 ppb were prepared.

Preparation of matrix matched standard linearity levels

The norbixin sample extract prepared as per section 3-2 was used as a matrix blank. It was spiked with above solvent standard levels to prepare matrix match linearity of 1, 2, 4, 10, 20 and 50 ppb.

• Preparation of spike samples (Recovery samples)

To determine the extraction efficiency of the method, recovery study was conducted. For this, 2 g sample was spiked with pesticide standard mixture to prepare recovery samples of 5, 10 and 25 ppb. The spiked pesticides were then extracted, analyzed and quantified against matrix matched linearity to study their recoveries.

Figure 2. Shimadzu GCMS-TQ8040 NX

3-3. Analytical Conditions

Table 1 Instrument configuration and Analytical Conditions: GC-MS/MS

System Configurat	ion					
Instrument	: GCMS-TQ8040 NX					
Auto-injector	: AOC™-20i + s					
Column	: SH-I-5Sil MS (30 m × 0.25 mm I.D., df = 0.25 μm) (P/N:221-75954-30)					
Liner	: Restek [®] Topaz Liner, Splitless single taper w/ wool					
GC						
Injector temp.	: 250 °C					
Column oven temp	: 80 °C (2 min), 20 °C/min to 180 °C (0 min), 5 °C/min to 300 °C (3.00 m					
Run time	: 34 min					
Injection mode	: Splitless (High pressure at 250 kPa)					
Injection volume	: 2 μL					
Carrier gas	: He					
Linear Velocity	: 40.4 cm/sec (Constant mode)					
MS						
Interface temp.	: 280 °C					
lon source temp.	: 230 °C					
Ionization mode	: EI					
Solvent cut time	: 5.0 min					
Loop Time	: 0.3 sec					

Table 2 Summary results

ID	С
1	Prop
2	Tetra
3	
4	Pvri
5	Meta
6	Linu
7	Mala
8	Chlo
9	Cvp
10	Fipr
11	Triflu
12	Thia
13	Flut
14	Prof
15	Fluc
16	Мус
17	Bup
18	Chlo
19	Trifle
20	Prop
21	Quir
22	Fon
23 24	Fluc
25	Teb
26	Pipe
27	Ipro
28	Flux
29	Bife
30	Bife
31	Chlo
32	Eto>
33	Fen
34	Pyri
35	Lam
36	Spir
37	Perr
30	Pyri
40	Fen
41	Cvfl
42	Cyfl
43	Cyfl
44	, Cvfl
45	Bos
46	Сур
47	Сур
48	Сур
49	Сур
50	Pyra
51	Dife
52	Dife
53	Indo
54	Azo
55	Dim
56	Dim

ompound Name		_		Determination	001	Mean	Precision	
	Ret. Time (min)	Target MRM (m/z)	CE	Coefficient (r ²)	(ppb)	Recovery at LOQ (%)	% RSD _R (n=6)	% RSD _r (n=6)
amocarb	7.22	188.15>58.10	12	0.9988	10	117.82	2.50	0.26
hydrophthalimide I) as Captan deg.	8.06	151.10>79.00	18	0.9940	25	77.46	24.68	17.20
non	10.89	304.10>179.20	19	0.9978	5	75.70	8.72	4.91
nethanil	11.08	198.10>118.10	30	0.9984	5	76.02	5.13	3.04
laxyl	12.49	234.10>146.20	20	0.9976	5	86.61	8.19	5.74
on	13.16	248.00>61.00	16	0.9994	10	76.64	7.63	11.14
thion	13.16	157.95>125.00	9	0.9986	5	82.78	4.84	5.44
nvrifos	13 39	313 95>257 90	17	0 9974	5	83.98	12 54	11 59
odinil	14 41	224 15>222 10	24	0.9969	5	75.91	9.39	8 45
nil	14 64	367 00>213 00	29	0.9971	5	80.83	9.63	10.23
mizole	15.06	278 05>73 10	8	0.9700	10	74 75	19.80	18.95
pendazole	15.16	174.10>65.00	28	0.9822	5	78.00	10.67	19.61
afol	15.99	219 10>123 10	21	0.9945	5	87 45	12 42	4 92
enofos	16.33	339.00>268.90	15	0.9979	10	84 84	8 74	12 02
oxonil	16.53	248 05>127 10	27	0.9959	5	75 29	4 38	5.06
obutanil	16.00	179 05>152 00	9	0.9903	5	80.70	5.67	4 22
ofezin	16.82	172 10 57 10	21	0.9949	5	75 56	7.23	13 44
fenanyr	17.06	247 00>227 00	14	0.9949	10	71.85	12.95	17 79
vystrobin	18.81	222 05 190 10	5	0.9024	5	82.26	12.00	6.73
conazole-1	18.85	172 95 109 00	25	0.9925	5	8/ 37	8 01	13.24
	18.00	237.00>208.10	23	0.9907	5	75 14	5.35	5 50
	10.90	172.05 100.00	21	0.9907	5	90.96	11 47	0.70
ovomid	10.11	172.95>109.00	17	0.9973	5	71.02	10.07	9.79
	19.11	200.00 182.00	10	0.9930	5	02 02	7.07	5.04
	19.17	209.00>182.00	19	0.9990	5	03.03	10.11	0.94 10.67
	19.00	230.10>125.10	2 I	0.9950	5 5	70.40	TU.TT	12.07
iono	20.48	314.00>245.00	10	0.9977	5	60.30	17 74	13.62
ione pyrovod	20.40	314.00>245.00	12	0.9990	5	96.19	5 19	5.00
thrip	20.70	191.05, 165.10	10	0.9903	5	00.10	5.10	0.99
	20.74	200 10 259 10	22	0.9903	5	61.20	11.00	4.07
	20.90	300.10>258.10	9	0.9697	5	62.24	12.40	9.20
	20.99	270.00>249.00	20	0.9927	5 10	03.24	11 16	12.74
1201e	21.03	330.10>57.10	24 10	0.9941	10	77.50	11.10	4.00
ropatrini	21.07	205.05>210.10	12	0.9994	Э Г	00.02	11.30	0.00
	22.24	130.10>78.00	24	0.9925	5	00.70	F 69	4.31
dialofon	22.02	208.05>181.10	9	0.9983	Э Г	88.73	0.00	4.71
	23.83	312.00>109.10	21	0.9863	5	74.66	15.32	6.05
iethrin 2	24.10	162.95>127.00	9	0.9947	Э Г	79.40	9.89	4.30
	24.35	162.95>127.10	9	0.9968	5	79.42	4.44	5.73
apen	24.30	147.15>117.10	24 40	0.9961	5	85.03	0.22	9.19
	25.08	198.10>129.10	12	0.9986	5	83.3Z	4.42	3.08
thrin 2	25.17	226.05>206.10	15	0.9932	10	75.00 05.47	12.42	10.40
	25.37	220.05>200.10	15	0.9798	10	00.47	13.12	10.49
thrin-3	25.48	226.05>206.10	15	0.9894	10	86.09	12.40	9.76
thrin-4	25.58	226.05>206.10	15	0.9975	10	88.12	9.80	6.57
alid	25.85	140.10>76.00	24	0.9980	5	81.28	3.45	3.54
rmethrin-1	25.78	162.95>127.00	9	0.9950	5	85.96	7.36	7.41
rmethrin-2	26.00	162.95>127.00	9	0.9957	5	78.84	9.92	15.88
rmethrin-3	26.09	162.95>127.00	9	0.9986	5	72.57	7.35	10.27
rmethrin-4	26.18	162.95>127.00	9	0.9954	5	81.45	8.22	2.72
clostrobine	27.68	164.05>132.10	12	0.9989	5	83.86	3.69	4.20
oconazole-1	28.35	323.05>264.90	18	0.9984	5	83.68	9.86	8.59
oconazole-2	28.46	323.05>264.90	18	0.9977	5	76.02	10.03	5.15
acarb	28.79	264.05>176.00	15	0.9969	5	74.27	12.26	6.14
ystrobin	29.26	344.10>329.00	21	0.9956	5	78.64	5.13	10.39
thomorph-1	29.48	301.05>165.10	15	0.9950	5	84.57	6.02	4.92
thomorph-2	30.05	301.05>165.10	15	0.9969	5	86.63	4.97	5.63

4. Results

Validation parameters like linearity, recovery and precision were studied to establish LOQs. The summary results are shown in Table 2.

4-1. Linearity

For linearity study and quantifying spiked samples, matrix matched calibration standards were used. Multilevel calibration curve included 1, 2, 4, 10, 20, and 50 ppb concentration levels. All calibration standards were found within 80 to 120% accuracy range which is well within the criteria mentioned in SANTE guidelines.^[2]

4-2. Recovery

Recovery was evaluated by analyzing spiked samples at 5, 10 and 25 ppb (six spiked samples at each level) against matrix matched linearity plotted between 1 to 50 ppb. Mean recoveries were found to be within 60-120% at LOQ level (Refer Table 2). As mentioned previously, spiked samples were diluted 2.5 times, so that final concentrations analyzed against linearity were 2, 4 and 10 ppb.

4-3. Precision (% RSD)

found to be less than 20 % (Refer Table 2). was found to be less than 30 % (Refer Table 2).

4-4. LOQ

Out of 56 pesticides analyzed, this method successfully achieved LOQs of 5, 10 and 25 ppb for 45, 10 and 1 pesticides, respectively. Captan was detected in the form of it's degradant i.e. Tetrahydrophthalamide (THPI) at 25 ppb. List of LOQs of individual pesticides is shown in Table 2.

5. Conclusion

- reproducible detection of analytes.

6. References

MP 255

For precision, repeatability and within-laboratory reproducibility studies were carried out.

RSD_r: Repeatability experiment was performed by injecting 6 replicates of spiked samples at 5, 10 and 25 ppb concentration levels. The % RSD for 6 injections at their respective LOQ levels was

RSD_R: Reproducibility experiment for recoveries was performed on 6 different spiked samples at 5, 10 and 25 ppb concentration levels. The % RSD of 6 spiked samples at their respective LOQ level

> This study shows that the modified QuEChERS method combined with GC-MS/MS system is a reliable and efficient tool to quantify residual pesticides in norbixin sample. Although oleoresin is a complex matrix, the modified QuEChERS method significantly reduces interference.

> Also, highly sensitive Shimadzu GC-MS/MS allows trace level detection even after multifold dilution of sample. This helps in reducing contamination and enhancing ruggedness resulting in

> The combination of sensitive instrument and reliable method enables its use in testing laboratories for multi-residue analysis of Norbixin oleoresin.

1. M. Anastassiades, S. J. Lehotay, D. Štajnbaher, F. J. Schenck, Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and "Dispersive Solid-Phase Extraction" for the Determination of Pesticide Residues in Produce, J. AOAC Int., 86: 412–431, 2003

2. Guidance document on analytical quality control and method validation procedures for pesticide residues and analysis in food and feed. SANTE/11312/2021