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4: Conclusions
• These two visualisation methods were developed as tools for MS sensitivity

improvement R&D.

• ESI droplet mapping provides detailed maps for each setup conditions.

• Visualisation of the supersonic gas jet allows shape optimisation as well
study of interaction with of the gas jet with objects. It is a fast and easy
method providing understanding of a region of the MS which previously
was only accessible through complex CFD simulations.
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1: Introduction

• A mass spectrometer’s sensitivity is directly connected with the gas intake
from the ESI chamber into the vacuum side of the MS. To see, helps to
understand; understand, helps to improve. We are presenting two novel
techniques, one for visualisation of ESI droplets in atmospheric pressure
and one for visualisation of the supersonic gas jet entering the first low
pressure mass spectrometer region.

2: High Speed Microscope Photography

We developed a 3D ESI droplet scanner, composed of:
I. Fast photographic camera with telecentric optics
II. High power UV light source for the bright field mode
III. Robotized XYZ stage moving the camera together with the light source
IV. Image recognition software
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Droplet detection/extraction:
1. Increasing contrast using Contrast-Limited Adaptive Histogram Equalization

(CLAHE)1

2. Cropping to remove any artifacts at the edges of the image that could generate
false positives

3. Non-Local Means (NLM)1 filtering to de-noise/smooth the image
4. Increasing brightness to better define the droplet
5. Sharpening using a sharpening kernel to better define the droplet
6. Edge Detection using Canny algorithm1

7. Line detection of the edges using Hough algorithm1

8. The lines are isolated on a black background
9. Contouring algorithm to bound the lines into a single shape
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3: AC Electric Discharge type visualisation

• To visualize the supersonic gas jet plume on the MS vacuum side we used a
novel high voltage AC electric discharge method, similar to electric glow
discharge2. A transparent vacuum chamber was made to conduct these
experiments. The plasma discharge was only present around the exit of the
Interface Capillary, yet the whole supersonic gas jet was visible.
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• To visibility of the supersonic gas jet reached far beyond the plasma region. 
It was possible to install Q-array electrodes in the chamber without 
reducing gas jet brightness. Interaction of the gas jet with inserted objects 
could be investigated.

• Bandpass (10 nm) dichroic filters were used, adjusted to selected nitrogen 
spectrum peaks, to perform spectral photography. 

• The plasma region is limited to the Orifice (MS interface capillary exit holder). 
What can be observed when making images is photons originating from the 
transition between different electronic energy level in nitrogen atoms3. 

• The supersonic gas jet is visualised mainly due to photons originating from 
transitions between different vibrational energy levels of nitrogen molecules3. 
This is independent of the electric field. 

ESI

Interface Capillary

MS atmospheric 
pressure side (AP)

MS vacuum side

Q-array Multipoles MS Quadrupole

Investigated area

Investigated 
area

Droplets histograms (1 mm X 0.9 mm), 
size, velocity and direction

The ESI conditions were set to obtain lower droplets velocities for better visualisation: LC 
sample buffer flow 0.3 mL/min, nebulising gas 0.5 L/min and Heating Gas 5 L/min and 160 C°, 
Interface Voltage 4 kV 

AP side performance depends on 
how ions/droplets are generated 
towards the Interface Capillary. The 
capillary desolvates remaining 
droplets and delivers ions into the 
MS vacuum inside a supersonic gas 
jet. The shape and how well this gas 
jet fits between electrodes is 
responsible for effective ion capture. 


