

High-Sensitivity MALDI MS Imaging of Lipid C=C Positional Isomers via O₂-Enhanced Oxygen Attachment Dissociation (O₂E-OAD)

Satoshi Kasamatsu¹, Kaoru Nakagawa¹, Naoto Mishina¹, Hidenori Takahashi¹, Manami Kobayashi¹, Kengo Takeshita¹, Mohamed Boutaghou², Noriyuki Ojima¹ ¹Shimadzu Corporation, Japan; ²Shimadzu Scientific Instruments, Columbia, Maryland

1. Introduction

Oxygen Attachment Dissociation (OAD) enables localization of carbon-carbon double bonds (C=C) in lipids without derivatization¹⁻³⁾. We developed an oxygenenhanced OAD (O₂E-OAD) to improve radical generation and imaging sensitivity. This approach allows high-sensitivity MALDI imaging of C=C positional isomers.

2. Method

OAD (Oxygen Attachment Dissociation)-MS/MS

OAD is a new fragmentation technology that enables identification of structural isomers not achievable with CID. As shown in Fig. 1, charge-neutral atomic oxygen or hydroxyl radicals are introduced into q2, inducing gas-phase dissociation. Applicable to ions of any charge state, including negative and multiply charged ions, OAD selectively dissociates C=C in lipids, allowing positional isomer differentiation. In this study, we found that pre-irradiation of the radical source with pure oxygen O_2 enhances radical generation—a phenomenon defined as the O_2 -Enhanced OAD.

Shimadzu LCMS-9050 (Q-TOF) with OAD unit. Fig. 1

OAD LCMS-9050 system

The LCMS-9050 offers a unique capability to easily exchange ion sources and acquire both LC-MS and MSI data within a single platform. OAD-MS/MS further enables C=C localization and isomer distinction.

3. Results 3.1. Untargeted OAD-LCMS analysis

LCMS Analysis Parameters
 Table 1

Mass Spectrometer

System	: LCMS-9050 with OAD unit	
Polarity	: Positive	
MS/MS mode	: OAD	
Collision energy	: 30 V	
Data-Dependent MS/MS	: Top10 precursors from MS1	
Event time	: 100 msec for MS1 and MS/MS	
LC		
System	: Shimadzu UPLC system	
RP-IC Conditions	· Same as described in Uchino et	al ³⁾

Untargeted OAD-Lipidomics Workflow by LCMS

Lipid extracts from mouse tissue sections were analyzed using OAD-LCMS. Fig. 3 shows the workflow and a representative result. Spectra were automatically assigned to lipid structures using MS-DIAL. As an example, C=C positional isomers of PC 16:0_18:1 were identified, and their relative abundances are shown in the bar graph. PC 16:0_18:1 (n-7) was found at about half the abundance of the n-9 isomer, prompting further spatial analysis by MS imaging to investigate potential differences in their distribution within mouse brain tissue.

3.2. Targeted OAD-MSI analysis

MS Imagin

System Polarity MS/MS Collisio Spatial Laser S Laser I Matrix Coa System Matrix Coating

MALDI Matrix Optimization

In the analysis of phospholipids, DHB is commonly used as a matrix in positive ion mode; however, it has been reported that the optimal matrix varies depending on the lipid subclass ⁴). Among them, we conducted the analysis using DHAP, which is expected to enhance signal intensity in the analysis of PC. In mouse brain sections, PC 16:0_18:1 (m/z 798.542 [M+K]+) showed over 5 × higher ion intensity with DHAP than with DHB

[M+H]⁺ vs [M+K]⁺: Optimal Precursor for OAD

The mouse brain sections were washed with 50 mM ammonium formate ⁵⁾ to remove salts and concentrate the ion species to $[M+H]^+$. Washing gave >2× higher $[M+H]^+$ intensity, but $[M+K]^+$ showed ~2.5 × higher OAD efficiency. Thus, OAD product ion intensities were comparable, and [M+H]⁺ was selected as it provides more informative fragment ions for structural analysis by CID-MS/MS.

MS Imaging Analysis Parameters Table 2

ng	
I	: OAD iMScope QT system
/	: Positive
mode	: OAD
n energy	: 10 V
Resolution (Pitch)	: 50 µm 👘
Settings	: Repetition 100Hz, Diameter 4
ntensity	: 72
ating	
I	iMLayer
Used	2,5-Dihydroxyacetophenone (DHAP)
g Method	Sublimation

Comparison of ion intensities using DHB and DHAP in MS1.

Fig. 5 OAD-MS/MS with [M+H]+ vs. [M+K]+ precursors in mouse brain.

Spatial Distribution of C=C Isomers in Mouse Brain

MS imaging based on OAD-MS/MS enabled spatial differentiation of lipid C=C positional isomers in mouse brain tissue. For PC 16:0_18:1, the n-9 isomer was broadly distributed in white matter, while the n-7 isomer was locally concentrated in gray matter. Ratio images (e.g., n-7 / (n-7 + n-9)) clearly visualized the regional differences in isomer localization.

Ratio Images of C=C Positional Isomers in the Cerebellum

Fig. 6 C=C isomer distribution of PC 16:0_18:1 in mouse brain.

4. Conclusion

Reference

798.542

- 1) Takahashi *et al*. Anal. Chem
- Takahashi.H et al. Mass Spe
- Uchino.H et al. Commun Che

OAD-MS/MS visualized lipid C=C isomers in mouse brain. > OAD-LCMS and MSI were integrated for lipid identification and mapping. \succ [M+H]⁺ suited OAD-LCMS; [M+K]⁺ gave higher OAD efficiency in MSI. \succ The workflow enables confident structural and spatial analysis.

. 2018, 90 (12), 7230-7238.		
ectrometry. 2019, S0080.		
em. 5, 162 (2022).		

Angel MP et al. Anal. Chem. 2012, 84 (3), 1557-1564.

WP 250