SHIMADZU

Validated Method for the Determination of 46 Pesticides in Surface, Subterranean and Wastewater with No Sample Preparation

Luis O. Junqueira¹, Marília S. Cardoso¹, Monique F. dos Santos¹, Marcos A. Pudenzi¹, Ichiro Hirano¹ (1) Shimadzu Brasil, Barueri, Brazil

I. Introduction

- Pesticides are commonly used with both agricultural and nonagricultural purposes worldwide and may have potential toxic effects for both the environment and communities in the surrounding areas, making them important contaminants to bodies of water.^{1, 2}
- The highly toxic potential of the pesticides brings together a big number of international and local legislations demanding the monitoring of this class of compounds in a variety of types of aqueous matrices.^{3, 4}
- Several regulations demand the monitoring of these components in different types of bodies of water including EPA and Brazilian Ministry of Health.^{1, 2, 3, 4}
- This work brings a fast and robust method measuring 46 pesticides in less than 6 minutes without sample preparation for three different water matrices.

2. Methods

- ◆ Analyses were performed using a NexeraTM XR UHPLC coupled with LCMS-8050 (Shimadzu®, Japan), equipped with an electrospray ionization (ESI) source (Fig 1). All conditions can be seen in Table 1.
- The LabSolutions software was used for sample injections, MRM event optimization, and data processing. The Connect and Insight software platforms were employed for interface condition optimization and data analysis, respectively.
- The water samples used in these analyses were filtered through $0.45 \ \mu m$ and $0.22 \ \mu m$ PVDF filters, transferred to $1.5 \ m L$ vials, and subsequently injected into the LC-MS system with no sample preparation.

Fig 1. NexeraTM XR coupled with LCMS-8050.

Table 1. UHPLC (Nexera[™] XR system) and LCMS 8050 conditions. **Analytical Column:** Shim-Pack GIST C18AQ HP (50 x 2.1 mm, 1.9 µm) **Mobile Phases** A: 5mM ammonium acetate + 0.05% acetic acid in water B: 5mM ammonium acetate + 0.05% acetic acid in acetonitrile $0\%B (0 - 1 min) \rightarrow 98\%B (1 - 2.3 min) \rightarrow 98\%B$ **Time Program:** $(2.3-4.0 \text{ min}) \rightarrow 0\%B (4.0.-4.01 \text{ min}) \rightarrow$ Stop (5.5 min) Flow Rate: 0.35 mL/min Injection Vol.: 15 µL Column Temp.: 50 °C **Interface Voltage** 4 kV 120°C **DL temperature Block Heater** 400 °C 400 °C Interface Nebulizer gas 3 L/min Drying gas 17 L/min 3 L/min Heating gas

3. Results

- Calibration curves were prepared in duplicate using surface water, subterranean, and effluent samples.
- The samples showed good agreement with the calibration curves, with $r^2 \ge 0.99$ for all tested water matrices, as shown in **Table 2.**
- To improve method reliability, a repeatability study was conducted using four replicates at 7.5 ng/mL, evaluating the mean, relative standard deviation (RSD), and accuracy, with an acceptable variation range of 75–125%. Only permethrin in the surface water matrix exceeded the allowed deviation, possibly due to losses during the filtration step. More complex matrices were found to increase RSD and reduce precision, as observed for ametryn, metolachlor, and simazine in the effluent water matrix.

Table 2	. Calibration	range used	for each	analyte in	different ty	ypes of v	vater
matrices	(continue).						

	Surface water		Subterranean		Effluent		
Analyta	Calibration		Calibration		Calibration		
Analyte	range	r ²	range	r²	range	r ²	
	(µg/L)		(µg/L)		(µg/L)		
2,4,5 T	0.5-10	0.9929	0.5-10	0.9979	0.5-10	0.9977	
2,4,5 TP	0.5-10	0.9985	0.5-10	0.9947	0.5-10	0.9998	
2,4-D	1-20	0.9935	1-20	0.9986	1-20	0.9999	
Acephate	0.5-25	0.9988	0.5-10	0.9927	2-50	0.9873	
Alachlor	0.02-2	0.9931	0.02-2	0.9971	0.1-5	0.9994	
Aldicarbe	0.5-10	0.9919	0.5-10	0.9965	0.5-10	0.9833	
Aldicarb Sulfone	0.5-10	0.9963	0.5-10	0.9993	0.5-10	0.9940	
Aldicarb Sulfoxide	0.5-10	0.9985	0.5-10	0.9951	0.5-10	0.9998	
Ametrine	0.02-2	0.9985	0.02-2	0.9906	0.1-5	0.9997	
Atrazine	0.1-5	0.9928	0.1-5	0.9927	0.1-5	0.9999	
2-Hydroxyatrazine	0.1-5	0.9972	0.1-5	0.9990	0.5-10	0.9998	
Desethylisopropylatr azine	0.5-25	0.9936	0.5-10	0.9972	2-50	0.9964	
Desethylatrazine	0.1-5	0.9956	0.1-5	0.9999	0.5-10	0.9867	
Desisopropylatrazine	0.1-10	0.9960	0.1-5	0.9932	0.5-10	0.9896	
Bentazone	0.1-10	0.9924	0.1-5	0.9977	0.1-5	0.9906	
Carbaryl	0.02-2	0.9952	0.02-5	0.9976	0.02-2	0.9923	
Carbendazim	0.02-2	0.9973	0.02-2	0.9996	0.1-5	0.9985	
Carbofurane	0.1-10	0.9987	0.1-5	0.9987	0.5-10	0.9993	
Ciproconazole	0.1-10	0.9903	0.1-5	0.9964	0.1-5	0.9997	
Chlorpyrifos	0.5-25	0.9978	0.5-25	0.9987	0.5-10	0.9984	
Chlorpyrifos Oxon	0.1-5	0.9929	0.1-5	0.9956	0.1-5	0.9967	
Demeton-O+S	0.02-4	0.9896	0.02-4	0.9998	0.04-4	0.9995	
Difenconazole	0.02-2	0.9933	0.1-5	0.9939	0.1-5	0.9969	

Fig 2. Linearity obtained for Alachlor in surface water, groudwater and effluent samples (0.02 - 2 ppb).

TP 294

Table 2. Calibration range used for each analyte in different types of wa	ater
matrices.	

	Surface water		Subterranean		Effluent	
Analyta	Calibration		Calibration		Calibration	
Analyte		r²	range	r ²	range	r²
	range (µg/L)		(µg/L)		(µg/L)	
Dimetoate	0.02-2	0.9955	0.1-5	0.9936	0.1-5	0.9991
Diuron	0.1-10	0.9980	0.1-5	0.9929	0.5-10	0.9999
Epoxiconazole	0.5-10	0.9912	0.1-5	0.9916	0.1-5	0.9975
Fipronil	0.1-10	0.9933	0.1-10	0.9977	0.1-5	0.9990
Flutriafol	0.5-10	0.9989	0.5-10	0.9976	1-25	0.9992
Malathion	0.02-2	0.9984	0.1-5	0.9842	0.02-2	0.9983
Metamidophos	1-25	0.9979	1-10	0.9982	1-25	0.9908
Metolachlor	0.1-5	0.9932	0.1-5	0.9969	0.1-5	0.9994
Metribuzin	1-25	0.9948	1-50	0.9952	2-50	0.9992
Molinate	1-25	0.9999	1-50	0.9999	1-25	0.9999
Ometoate	0.1-5	0.9891	0.1-5	0.9988	0.5-10	0.9996
Permethrin	1-50	0.9866	1-50	0.9991	1-25	0.9991
Picloram	2-50	0.9993	2-50	0.9988	2-50	0.9910
Profenofos	0.1-5	0.9904	0.1-10	0.9988	0.1-10	0.9996
Propanyl	0.5-10	0.9972	1-50	0.9874	1-25	0.9984
Propargite	0.1-10	0.9995	0.1-10	0.9906	1-25	0.9985
Protioconazole	0.5-10	0.9995	1-50	0.9915	1-25	0.9977
Protioconazole Destio	0.5-10	0.9987	0.5-10	0.9987	1-25	0.9995
Simazine	0.5-10	0.9917	0.5-10	0.9977	0.5-10	0.9998
Tebuconazole	0.5-10	0.9956	0.5-10	0.9946	0.5-10	0.9994
Terbufos	0.5-10	0.9966	0.5-50	0.9952	1-25	0.9949
Thiamethoxam	0.1-10	0.9902	0.1-5	0.9972	0.5-10	0.9990
Thiodicarb	0.1-10	0.9984	0.1-5	0.9966	0.1-5	0.9978

4. Conclusion

The LCMS-8050 accurately quantified 46 analytes regulated by drinking water and water quality standards set by the Brazilian Ministry of Health and the National Environment Council, using a rapid method with analysis time under 6 minutes. The method proved to be robust and reliable, showing good reproducibility, negligible carryover, and a consistent linear working range across all water matrices.

Reference

- 2) CONSELHO NACIONAL DO MEIO AMBIENTE. Resolução CONAMA nº 396. Brasília, 2008. 3)
- 3) CONSELHO NACIONAL DO MEIO AMBIENTE. Resolução CONAMA nº 430. Brasília, 2011.
- 4) MINISTÉRIO DA SAÚDE. Portaria GM/MS nº 888. Brasília, 2021.

¹⁾ CONSELHO NACIONAL DO MEIO AMBIENTE. Resolução CONAMA nº 357. Brasília, 2005.

Disclaimer: The products and applications in this presentation are intended for Research Use Only (RUO). Not for use in diagnostic procedures.