

Improved Transformer Oil Gas Analysis (TOGAS) by GC Headspace

Clifford M Taylor, Ronald D Snelling, Richard R Whitney, Shimadzu Scientific Instruments, Columbia, MD, USA

Description

Hydrocarbon-based oils used as insulating fluids in transformers can partially decompose and produce gases such as hydrogen, methane, carbon monoxide, carbon dioxide and C2-C4 species which are all soluble in the oil. Measurement of the concentrations of these gases as well as the concentration of oxygen and nitrogen in the transformer oil can provide useful information about the existence of faults in the transformer, and indicate when preventative maintenance should be performed. Basic methods for this analysis are described in ASTM-D3612 Method A,B and C.

A Gas Chromatograph configured with a headspace autosampler, two automated valves and three detectors will be described. Improvements include detection limits for hydrogen, analysis of hydrocarbons up to n-C4 within 20 minutes, and automated software processing of the data to account for the actual temperature and atmospheric pressure.

In this poster we will examine the methodology from sample prep to GC analysis and data processing.

The System:

- GC with TCD, FID and PDHID
- Tekmar HT-3 Static Headspace Sampler
- Two Valco 1/8th inch 4 port electrically actuated valves
- 5 packed columns
- Data station and software

Plumbing Diagram

Carrier 1: Helium 300kPa

Carrier 2: Helium 301kPa

Carrier 3: Helium 310kPa

Column 1= 2m X 1/8 Hayesep Q 80/100

Column 2= 2.5m X 1/8 MS 5A 60/80

🕀 SHIMADZU

Column 3= 2.5M Hayesep T 80/100

Column 4= 2M restrictor

Column 5= 2M restrictor

Vial Prep for Gas Standards

Cap 20ml vial and insert two needles (18G luer lock)

- Connect Argon to one of the needles and purge 2 I/min for 45 seconds
- Connect Helium to the top needle and purge for 2 minutes @ 100 ml/min flow from top to bottom
- Vial is ready for gas standard or oil filling by flowing the standard for 10 minutes at 50 ml/min

GC Analytical Conditions

🕀 SHIMADZU

Gas Standard Chromatograms

Gas Standard Precision

Gas Standards were prepared using the procedure outlined above

SHIMADZU

- Three concentrations were made:
 - ■50ppm
 - ■500ppm
 - ■5000ppm

Five vials of each concentration were loaded on the HT-3 and analyzed; results are shown in the table

Gas Standard Precision								🕀 SHIMADZU				
N=5	H2	02	N2	CH4	CO	<i>CO2</i>	C2H 4	C2H 6	C2H 2	C3H 8	C3H 6	i- C4H10
50ppm Mean	53	N/D	1267	49	77	54	51	51	48	50	51	50
STDEV	0.84	N/D	549.82	0.30	8.15	0.84	0.24	0.22	0.44	0.26	0.24	0.36
%RSD	1.60	N/D	43.38	0.62	10.6	1.55	0.47	0.43	0.92	0.52	0.47	0.72
500ppm Mean	697	842	5959	560	708	997	492	494	472	497	541	504
STDEV	4.71	240.95	208.18	2.58	4.41	5.99	2.75	2.85	7.45	3.23	3.29	2.87
%RSD	0.68	28.62	3.49	0.46	0.62	0.60	0.56	0.58	1.58	0.65	0.61	0.57
5000ppm Mean	4376	9654	50525	4014	4439	5068	5112	5139	5111	5099	5124	5020
STDEV	34.8	151.39	214.31	48.85	34.40	23.76	24.52	25.11	66.16	21.23	31.21	23.74
%RSD	0.80	1.57	0.42	1.22	0.77	0.47	0.48	0.49	1.29	0.42	0.61	0.47

Oil Sample Prep Procedure

Vials are prepared as per the gas standard procedure outlined above

- 15ml of oil from the sample syringe is injected into the vial
- Once 12mls have been transferred to the vial, the "vent needle" is removed and the last 5 ml is filled, leaving the vial slightly under positive pressure

Oil Sample Reproducibility

🕀 SHIMADZU

n=32	Hydrogen	Methane	Carbon Monoxide	Oxygen	Nitrogen	Carbon Dioxide
Mean Conc ppm	32	435	877	4755	102454	4576
STDEV	2.1	25.1	81.2	4173.5	20635.5	124.9
%RSD	6.6	5.8	9.3	87.8	20.1	2.7

n=32	Ethylene	Ethane	Acetylene	Propane	Propylene	Isobutane
Mean Conc ppm	192	102	0	62	29	11
STDEV	5.4	2.7	0.0	2.0	0.9	2.6
%RSD	2.8	2.6	N/A	3.2	3.1	24.3

- A single lab analyzed the oil from a single transformer
- 16 syringes each in duplicate for 32 total analyses
- Acetylene was determined to not be present in this oil

12 sample

Advanced report

- An automated report is generated at the end of each analysis
- This report corrects for actual temperature, pressure, sample amount and the solubility coefficient of each analyte

Toga Analysis Report

SAMPLE ID Analysis Date and Time File Name: Baro Press in. Hg Vol of Headspace Vol Of Oil (Vo) Rm Temp F Baro Press (Pa) Rm Temp (K) Ideal Temp Ideal Press	True Nort 39776.885 True Nort 1 7.8 14 1 3.4 255.93 273 760	th 100 A inj 00 2835648 th Multiple Ru	02 un 025.	dat	
DFID					
Peak Name	Area	Raw Conc	к	Corrected Conc.	Final Result STP
Hydrogen	1978131	99.77	1.00	155.36	5.56
Methane	8902112	64.52	1.00	100.47	3.60
Carbon Monoxide	5289223	90.90	1.00	141.54	5.07
TCD-L Peak Name	Area	Raw Conc	к	Corrected Conc.	Final Result STP
Carbon Dioxide	384561	71.90	1.00	111.96	4.01
Ethylene	279463	39.42	1.00	61.39	2.20
Ethane	220962	32.11	1.00	50.00	1.79
Acetylene	283997	47.34	1.00	73.72	2.64
Propane	171587	16.65	1.00	25.92	0.93
Propylene	0	0.00	1.00	0.00	0.00
Isobutane	0	0.00	1.00	0.00	0.00
PDHID					-
Peak Name	Area	Raw Conc	K	Corrected Conc.	Final Result STP
Oxygen	24220	14830.94	1.00	23103.23	820.85
Nurogen	908/0	04999.90	1.00	80027.00	3004.82
		Combustible	Gas		22
		Atmorphorie	Gaz	97	0.20

Reviewed

Conclusion

- Acceptable reproducibility can be obtained with this method for all target compounds except for Oxygen
 - Oxygen is not a critical component in evaluating transformer health

- Hydrogen sensitivity is better with PDHID than by TCD
- The analysis can be automated by the HT-3
- The separation design protects the MS column from absorbing H2O and CO2.
- C4 which may be present will elute within 19 minutes avoiding ghost peaks
- Continued work is suggested to further optimize the method precision and accuracy.